Back to Search Start Over

Spatiotemporal patterns of rain-on-snow and basal ice in high Arctic Svalbard: detection of a climate-cryosphere regime shift

Authors :
Bart Peeters
Åshild Ønvik Pedersen
Leif Egil Loe
Ketil Isaksen
Vebjørn Veiberg
Audun Stien
Jack Kohler
Jean-Charles Gallet
Ronny Aanes
Brage Bremset Hansen
Source :
Environmental Research Letters, Vol 14, Iss 1, p 015002 (2019)
Publication Year :
2019
Publisher :
IOP Publishing, 2019.

Abstract

Arctic winters have become increasingly warmer and rainier. Where permafrost prevails, winter rain (or rain-on-snow) is known to occasionally cause extensive ice layers at the snow/ground interface, i.e. ‘basal ice’ or ‘ground ice’, with potentially large ecological and socio-economic implications. However, an overall lack of field data has so far restricted our predictive understanding of the environmental conditions shaping spatiotemporal variation in basal ice. Here, we use time-series of spatially replicated snowpack measurements from coastal (Ny-Ålesund area; 2000–2017) and central Spitsbergen (Nordenskiöld Land; 2010–2017), Svalbard, to analyze spatiotemporal patterns in basal ice and how they are linked with topography, weather, snowpack and climate change. As expected, both the spatial occurrence and thickness of basal ice increased strongly with the annual amount of winter rain. This effect was modified by accumulated snowfall; a deeper snowpack restricts ice formation following a minor rain event, but enhances ice formation following heavy rain due to an increased contribution of snowmelt. Accordingly, inter-annual variation in snow depth was negatively related to basal ice thickness. Annual fluctuations in basal ice thickness were strongly correlated in space (average correlation ρ = 0.40; 0–142 km distance between plots) due to strong spatial correlation in winter rain ( ρ = 0.62; 14–410 km distance between meteorological stations). Models of basal ice based on meteorological time-series (1957–2017) suggested that ice-free winters (i.e. mean basal ice

Details

Language :
English
ISSN :
17489326
Volume :
14
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Environmental Research Letters
Publication Type :
Academic Journal
Accession number :
edsdoj.5fc0b72f7e474fdba87969fd8b1a8b91
Document Type :
article
Full Text :
https://doi.org/10.1088/1748-9326/aaefb3