Back to Search
Start Over
Improvement of multilineage hematopoiesis in hematopoietic stem cell-transferred c-kit mutant NOG-EXL humanized mice
- Source :
- Stem Cell Research & Therapy, Vol 15, Iss 1, Pp 1-7 (2024)
- Publication Year :
- 2024
- Publisher :
- BMC, 2024.
-
Abstract
- Abstract Human hematopoietic stem cell (HSC)-transferred humanized mice are valuable models for exploring human hematology and immunology. However, sufficient recapitulation of human hematopoiesis in mice requires large quantities of enriched human CD34+ HSCs and total-body irradiation for adequate engraftment. Recently, we generated a NOG mouse strain with a point mutation in the c-kit tyrosine kinase domain (W41 mutant; NOGW mice). In this study, we examined the ability of NOGW mice to reconstitute human hematopoietic cells. Irradiated NOGW mice exhibited high engraftment levels of human CD45+ cells in the peripheral blood, even when only 5,000–10,000 CD34+ HSCs were transferred. Efficient engraftment of human CD45+ cells was also observed in non-irradiated NOGW mice transferred with 20,000–40,000 HSCs. The bone marrow (BM) of NOGW mice exhibited significantly more engrafted human HSCs or progenitor cells (CD34+CD38− or CD34+CD38+ cells) than the BM of NOG mice. Furthermore, we generated a human cytokine (interleukin-3 and granulocyte-macrophage colony-stimulating factor) transgenic NOG-W41 (NOGW-EXL) mouse to achieve multilineage reconstitution with sufficient engraftment of human hematopoietic cells. Non-irradiated NOGW-EXL mice showed significantly higher engraftment levels of human CD45+ and myeloid lineage cells, particularly granulocytes and platelets/megakaryocytes, than non-irradiated NOGW or irradiated NOG-EXL mice after human CD34+ cell transplantation. Serial BM transplantation experiments revealed that NOGW mice exhibited the highest potential for long-term HSC compared with other strains. Consequently, c-kit mutant NOGW-EXL humanized mice represent an advanced model for HSC-transferred humanized mice and hold promise for widespread applications owing to their high versatility.
Details
- Language :
- English
- ISSN :
- 17576512
- Volume :
- 15
- Issue :
- 1
- Database :
- Directory of Open Access Journals
- Journal :
- Stem Cell Research & Therapy
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.5fb3c7fe2ac54a79a530db9b5302a07c
- Document Type :
- article
- Full Text :
- https://doi.org/10.1186/s13287-024-03799-w