Back to Search Start Over

Correlator convolutional neural networks as an interpretable architecture for image-like quantum matter data

Authors :
Cole Miles
Annabelle Bohrdt
Ruihan Wu
Christie Chiu
Muqing Xu
Geoffrey Ji
Markus Greiner
Kilian Q. Weinberger
Eugene Demler
Eun-Ah Kim
Source :
Nature Communications, Vol 12, Iss 1, Pp 1-7 (2021)
Publication Year :
2021
Publisher :
Nature Portfolio, 2021.

Abstract

Physical principles underlying machine learning analysis of quantum gas microscopy data are not well understood. Here the authors develop a neural network based approach to classify image data in terms of multi-site correlation functions and reveal the role of fourth-order correlations in the Fermi-Hubbard model.

Subjects

Subjects :
Science

Details

Language :
English
ISSN :
20411723
Volume :
12
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Nature Communications
Publication Type :
Academic Journal
Accession number :
edsdoj.5f988f964a14deb9630bb1251319555
Document Type :
article
Full Text :
https://doi.org/10.1038/s41467-021-23952-w