Back to Search Start Over

Information Retrieval and Machine Learning Methods for Academic Expert Finding

Authors :
Luis M. de Campos
Juan M. Fernández-Luna
Juan F. Huete
Francisco J. Ribadas-Pena
Néstor Bolaños
Source :
Algorithms, Vol 17, Iss 2, p 51 (2024)
Publication Year :
2024
Publisher :
MDPI AG, 2024.

Abstract

In the context of academic expert finding, this paper investigates and compares the performance of information retrieval (IR) and machine learning (ML) methods, including deep learning, to approach the problem of identifying academic figures who are experts in different domains when a potential user requests their expertise. IR-based methods construct multifaceted textual profiles for each expert by clustering information from their scientific publications. Several methods fully tailored for this problem are presented in this paper. In contrast, ML-based methods treat expert finding as a classification task, training automatic text classifiers using publications authored by experts. By comparing these approaches, we contribute to a deeper understanding of academic-expert-finding techniques and their applicability in knowledge discovery. These methods are tested with two large datasets from the biomedical field: PMSC-UGR and CORD-19. The results show how IR techniques were, in general, more robust with both datasets and more suitable than the ML-based ones, with some exceptions showing good performance.

Details

Language :
English
ISSN :
19994893
Volume :
17
Issue :
2
Database :
Directory of Open Access Journals
Journal :
Algorithms
Publication Type :
Academic Journal
Accession number :
edsdoj.5f71e056202a41e58845899508c6ff96
Document Type :
article
Full Text :
https://doi.org/10.3390/a17020051