Back to Search Start Over

Thermal transport analysis of six circular microchannel heat sink using nanofluid

Authors :
Hassan Waqas
Shan Ali Khan
Umar Farooq
Taseer Muhammad
Ahmad Alshehri
Sumeira Yasmin
Source :
Scientific Reports, Vol 12, Iss 1, Pp 1-19 (2022)
Publication Year :
2022
Publisher :
Nature Portfolio, 2022.

Abstract

Abstract Electronics devices growth in the last decade of the twentieth century ushered in a revolution inside the electronics segment. Continuous micro-sizes and operation cause these devices to heat up, resulting in a reduction in their performance or damage to their parts. Because heat can decrease device performance and life span while also wasting energy, offering an incorporated and effective cooling system has become a significant part of the design of device equipment. One of the key challenges of modern generation technology is the cooling of electronic devices. Nanofluids have attracted attention in a broad range of engineering implementations due to their great properties, which may be used to effectively cool devices while also improving energy efficiency. In view of the above defects, this numerical research object to examine the chip surface temperature, heat transfer rate, thermal resistance, Darcy friction factor and reliability of microelectronic chips in minichannel heat sinks is scrutinized by utilizing a $${\text{TiO}}_{2}$$ TiO 2 /water nanofluid as a coolant and comparing the nanoliquid outcomes with the outcomes of water. $${\text{TiO}}_{2}$$ TiO 2 /Water nanofluids at 1%, 2% and 3% volume concentrations are employed for this scrutinization. Here, a commercial CFD ANSYS (R19.2) FLUENT software package is used to analyze the electronic chip performance. The CFD ANSYS (R19.2) FLUENT software package is used for modeling, meshing and simulation of the current study.

Subjects

Subjects :
Medicine
Science

Details

Language :
English
ISSN :
20452322
Volume :
12
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
edsdoj.5f6caf9568747f1acf9ba8277047f76
Document Type :
article
Full Text :
https://doi.org/10.1038/s41598-022-11121-y