Back to Search Start Over

Identification of endoplasmic reticulum stress genes in human stroke based on bioinformatics and machine learning

Authors :
Nan Jiang
Chuying Wang
Bingqing Xie
Huangfan Xie
Anguo Wu
Xi Kong
Long Gu
Yong Jiang
Jianhua Peng
Source :
Neurobiology of Disease, Vol 199, Iss , Pp 106583- (2024)
Publication Year :
2024
Publisher :
Elsevier, 2024.

Abstract

After ischemic stroke (IS), secondary injury is intimately linked to endoplasmic reticulum (ER) stress and body-brain crosstalk. Nonetheless, the underlying mechanism systemic immune disorder mediated ER stress in human IS remains unknown. In this study, 32 candidate ER stress-related genes (ERSRGs) were identified by overlapping MSigDB ER stress pathway genes and DEGs. Three Key ERSRGs (ATF6, DDIT3 and ERP29) were identified using LASSO, random forest, and SVM-RFE. IS patients with different ERSRGs profile were clustered into two groups using consensus clustering and the difference between 2 group was further explored by GSVA. Through immune cell infiltration deconvolution analysis, and middle cerebral artery occlusion (MCAO) mouse scRNA analysis, we found that the expression of 3 key ERSRGs were closely related with peripheral macrophage cell ER stress in IS and this was further confirmed by RT-qPCR experiment. These ERS genes might be helpful to further accurately regulate the central nervous system and systemic immune response through ER stress and have potential application value in clinical practice in IS.

Details

Language :
English
ISSN :
1095953X
Volume :
199
Issue :
106583-
Database :
Directory of Open Access Journals
Journal :
Neurobiology of Disease
Publication Type :
Academic Journal
Accession number :
edsdoj.5ecd13e4e5cf4646bce8e775ecd9567d
Document Type :
article
Full Text :
https://doi.org/10.1016/j.nbd.2024.106583