Back to Search
Start Over
Effect of Post-Cured through Thickness Reinforcement on Disbonding Behavior in Skin–Stringer Configuration
- Source :
- Materials, Vol 17, Iss 14, p 3389 (2024)
- Publication Year :
- 2024
- Publisher :
- MDPI AG, 2024.
-
Abstract
- An experimental investigation of interlaminar toughness for post-cured through-thickness reinforcement (PTTR) skin–stringer sub-element is presented. The improvement in the crack resistance capability of skin–stringer samples was shown through experimental testing and finite element analysis (FEA) modeling. The performance of PTTR was evaluated on a pristine and initial-disbond of the skin–stringer specimen. A macro-scale pin–spring modeling approach was employed in FEA using a non-linear spring to capture the pin failure under the mixed-mode load. The experimental results showed a 15.5% and 20.9% increase in strength for the pristine-PTTR and initial-disbond PTTR specimens, respectively. The modeling approach accurately represents the overall structural response of PTTR laminate, including stiffness, adhesive strength, crack extension scenarios and progressive pin failure modes. This modeling approach can be beneficial for designing damage-tolerant structures by exploring various PTTR arrangements for achieving improved structural responses.
- Subjects :
- through-thickness reinforcement
crack resistance
interlaminate toughing
cohesive zone modeling
Technology
Electrical engineering. Electronics. Nuclear engineering
TK1-9971
Engineering (General). Civil engineering (General)
TA1-2040
Microscopy
QH201-278.5
Descriptive and experimental mechanics
QC120-168.85
Subjects
Details
- Language :
- English
- ISSN :
- 19961944
- Volume :
- 17
- Issue :
- 14
- Database :
- Directory of Open Access Journals
- Journal :
- Materials
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.5ecca242c94448ecb30c2abb6a4e346e
- Document Type :
- article
- Full Text :
- https://doi.org/10.3390/ma17143389