Back to Search Start Over

BRD4 Targets the KEAP1-Nrf2-G6PD Axis and Suppresses Redox Metabolism in Small Cell Lung Cancer

Authors :
Yang Lv
Xiaotong Lv
Jiahui Zhang
Guozhen Cao
Changzhi Xu
Buchang Zhang
Wenchu Lin
Source :
Antioxidants, Vol 11, Iss 4, p 661 (2022)
Publication Year :
2022
Publisher :
MDPI AG, 2022.

Abstract

Accumulating evidence has witnessed the Kelch-like ECH-associated protein 1(KEAP1)- nuclear factor (erythroid-derived 2)-like 2 (Nrf2) axis is the main regulatory factor of cell resistance to endogenous and exogenous oxidative assaults. However, there are few studies addressing the upstream regulatory factors of KEAP1. Herein, bioinformatic analysis suggests bromodomain-containing protein 4 (BRD4) as a potential top transcriptional regulator of KEAP1 in lung cancer. Using molecular and pharmacological approaches, we then discovered that BRD4 can directly bind to the promoter of KEAP1 to activate its transcription and down-regulate the stability of Nrf2 which in turn transcriptionally suppresses glucose-6-phosphate dehydrogenase (G6PD) in small cell lung cancer (SCLC), a highly proliferative and aggressive disease with limited treatment options. In addition, BRD4 could associate with the Nrf2 protein in a non-KEAP1-dependent manner to inhibit Nrf2 activity. Furthermore, simultaneous application of JQ1 and ATRA or RRx-001 yielded synergistic inhibition both in vitro and in vivo. These data suggest metabolic reprogramming by JQ1 treatment improves cell resistance to oxidative stress and might be a resistance mechanism to bromodomain and extra-terminal domain (BET) inhibition therapy. Altogether, our findings provide novel insight into the transcriptional regulatory network of BRD4 and KEAP1 and transcriptional regulation of the pentose phosphate pathway in SCLC.

Details

Language :
English
ISSN :
11040661 and 20763921
Volume :
11
Issue :
4
Database :
Directory of Open Access Journals
Journal :
Antioxidants
Publication Type :
Academic Journal
Accession number :
edsdoj.5ec783fd264b44feb71cd563a89b4eb5
Document Type :
article
Full Text :
https://doi.org/10.3390/antiox11040661