Back to Search Start Over

CDKN2A/B Homozygous Deletions in Astrocytomas: A Literature Review

Authors :
Alexander Yuile
Laveniya Satgunaseelan
Joe Q. Wei
Michael Rodriguez
Michael Back
Nick Pavlakis
Amanda Hudson
Marina Kastelan
Helen R. Wheeler
Adrian Lee
Source :
Current Issues in Molecular Biology, Vol 45, Iss 7, Pp 5276-5292 (2023)
Publication Year :
2023
Publisher :
MDPI AG, 2023.

Abstract

Genomic alterations of CDKN2A and CDKN2B in astrocytomas have been an evolving area of study for decades. Most recently, there has been considerable interest in the effect of CDKN2A and/or CDKN2B (CDKN2A/B) homozygous deletions (HD) on the prognosis of isocitrate dehydrogenase (IDH)-mutant astrocytomas. This is highlighted by the adoption of CDKN2A/B HD as an essential criterion for astrocytoma and IDH-mutant central nervous system (CNS) WHO grade 4 in the fifth edition of the World Health Organisation (WHO) Classification of Central Nervous System Tumours (2021). The CDKN2A and CDKN2B genes are located on the short arm of chromosome 9. CDKN2A encodes for two proteins, p14 and p16, and CDKN2B encodes for p15. These proteins regulate cell growth and angiogenesis. Interpreting the impact of CDKN2A/B alterations on astrocytoma prognosis is complicated by recent changes in tumour classification and a lack of uniform standards for testing CDKN2A/B. While the prognostic impact of CDKN2A/B HD is established, the role of different CDKN2A/B alterations—heterozygous deletions (HeD), point mutations, and promoter methylation—is less clear. Consequently, how these alternations should be incorporated into patient management remains controversial. To this end, we reviewed the literature on different CDKN2A/B alterations in IDH-mutant astrocytomas and their impact on diagnosis and management. We also provided a historical review of the changing impact of CDKN2A/B alterations as glioma classification has evolved over time. Through this historical context, we demonstrate that CDKN2A/B HD is an important negative prognostic marker in IDH-mutant astrocytomas; however, the historical data is challenging to interpret given changes in tumour classification over time, variation in the quality of evidence, and variations in the techniques used to identify CDKN2A/B deletions. Therefore, future prospective studies using uniform classification and detection techniques are required to improve the clinical interpretation of this molecular marker.

Details

Language :
English
ISSN :
14673045 and 14673037
Volume :
45
Issue :
7
Database :
Directory of Open Access Journals
Journal :
Current Issues in Molecular Biology
Publication Type :
Academic Journal
Accession number :
edsdoj.5e480404154d849fb4a23f59390562
Document Type :
article
Full Text :
https://doi.org/10.3390/cimb45070335