Back to Search Start Over

Clocks without 'Time' in Entangled-State Experiments

Authors :
F. Hadi Madjid
John M. Myers
Source :
Entropy, Vol 22, Iss 4, p 434 (2020)
Publication Year :
2020
Publisher :
MDPI AG, 2020.

Abstract

Entangled states of light exhibit measurable correlations between light detections at separated locations. These correlations are exploited in entangled-state quantum key distribution. To do so involves setting up and maintaining a rhythm of communication among clocks at separated locations. Here, we try to disentangle our thinking about clocks as used in actual experiments from theories of time, such as special relativity or general relativity, which already differ between each other. Special relativity intertwines the concept of time with a particular definition of the synchronization of clocks, which precludes synchronizing every clock to every other clock. General relativity imposes additional barriers to synchronization, barriers that invite seeking an alternative depending on any global concept of time. To this end, we focus on how clocks are actually used in some experimental situations. We show how working with clocks without worrying about time makes it possible to generalize some designs for quantum key distribution and also clarifies the need for alternatives to the special-relativistic definition of synchronization.

Details

Language :
English
ISSN :
10994300
Volume :
22
Issue :
4
Database :
Directory of Open Access Journals
Journal :
Entropy
Publication Type :
Academic Journal
Accession number :
edsdoj.5e47bad9702e458c879592f2d8787b9d
Document Type :
article
Full Text :
https://doi.org/10.3390/e22040434