Back to Search Start Over

Targeted lipidomics analysis of possible molecular mechanisms of lipid changes in temporal lobe epilepsy models

Authors :
Huaiyu Sun
Xuewei Li
Zhiqing Chen
Hongmei Meng
Source :
Frontiers in Pharmacology, Vol 15 (2025)
Publication Year :
2025
Publisher :
Frontiers Media S.A., 2025.

Abstract

BackgroundLipids are vital biomolecules involved in the formation of various biofilms. Seizures can cause changes in lipid metabolism in the brain. In-depth studies at multiple levels are urgently needed to elucidate lipid composition, distribution, and metabolic pathways in the brain after seizure.MethodsIn this research, a cutting-edge targeted quantitative lipidomics study was conducted on the hippocampal tissues of six rats with temporal lobe epilepsy and six normal rats. Accurate lipid quantification based on linear equations was calculated using an internal standard. The lipids were quantitatively and qualitatively analyzed by ultra-high performance liquid chromatography (UPLC) and mass spectrometry (MS).ResultsA total of 21 lipid classes were identified. Among them, the most abundant were triacylglycerol (TG), phosphatidyl ethanolamine (PE-P), and fatty acids (FA). Cholesteryl ester (ChE) exhibits the most considerable difference between the normal and epileptic samples. ChE was found to be the most significantly upregulated lipid, while FA was observed to be the most significantly downregulated lipid.ConclusionBased on the absolute quantitative analysis of lipids in rat hippocampal specimens, the contents and change trends of different lipids were observed. Upregulation of ChE and dihydroceramide (DHCer) was observed, and an analysis of the distribution changes elucidated the causes and possible molecular mechanisms of lipid accumulation in temporal lobe epilepsy. The results and methods described provide a comprehensive analysis of lipid metabolism in temporal lobe epilepsy and a new therapeutic target for the treatment of epilepsy.

Details

Language :
English
ISSN :
16639812
Volume :
15
Database :
Directory of Open Access Journals
Journal :
Frontiers in Pharmacology
Publication Type :
Academic Journal
Accession number :
edsdoj.5e3ae3df2cc34af7a38e5f26196c312a
Document Type :
article
Full Text :
https://doi.org/10.3389/fphar.2024.1531524