Back to Search Start Over

Mechanical shutdown of battery separators: Silicon anode failure

Authors :
Ji-Young Seo
Suhwan Kim
Jung-Hui Kim
Yong-Hyeok Lee
Jin-Young Shin
Somi Jeong
Dong-Wook Sung
Yong Min Lee
Sang-Young Lee
Source :
Nature Communications, Vol 15, Iss 1, Pp 1-11 (2024)
Publication Year :
2024
Publisher :
Nature Portfolio, 2024.

Abstract

Abstract The pulverization of silicon (Si) anode materials is recognized as a major cause of their poor cycling performance, yet a mechanistic understanding of this degradation from a full cell perspective remains elusive. Here, we identify an overlooked contributor to Si anode failure: mechanical shutdown of separators. Through mechano-structural characterization of Si full cells, combined with digital-twin simulation, we demonstrate that the volume expansion of Si exerts localized compressive stress on commercial polyethylene separators, leading to pore collapse. This structural disruption impairs ion transport across the separator, exacerbating redox nonuniformity and Si pulverization. Compression simulation reveals that a Young’s modulus greater than 1 GPa is required for separators to withstand the volume expansion of Si. To fulfill this requirement, we design a high modulus separator, enabling a high-areal-capacity pouch-type Si full cell to retain 88% capacity after 400 cycles at a fast charge rate of 4.5 mA cm−2.

Subjects

Subjects :
Science

Details

Language :
English
ISSN :
20411723
Volume :
15
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Nature Communications
Publication Type :
Academic Journal
Accession number :
edsdoj.5e348e8182bc4731bdba2cac85e31421
Document Type :
article
Full Text :
https://doi.org/10.1038/s41467-024-54313-y