Back to Search
Start Over
Edge-rich molybdenum disulfide tailors carbon-chain growth for selective hydrogenation of carbon monoxide to higher alcohols
- Source :
- Nature Communications, Vol 14, Iss 1, Pp 1-11 (2023)
- Publication Year :
- 2023
- Publisher :
- Nature Portfolio, 2023.
-
Abstract
- Abstract Selective hydrogenation of carbon monoxide (CO) to higher alcohols (C2+OH) is a promising non-petroleum route for producing high-value chemicals, in which precise regulations of both C-O cleavage and C-C coupling are highly essential but remain great challenges. Herein, we report that highly selective CO hydrogenation to C2-4OH is achieved over a potassium-modified edge-rich molybdenum disulfide (MoS2) catalyst, which delivers a high CO conversion of 17% with a superior C2-4OH selectivity of 45.2% in hydrogenated products at 240 °C and 50 bar, outperforming previously reported non-noble metal-based catalysts under similar conditions. By regulating the relative abundance of edge to basal plane, C2-4OH to methanol selectivity ratio can be overturned from 0.4 to 2.2. Mechanistic studies reveal that sulfur vacancies at MoS2 edges boost carbon-chain growth by facilitating not only C-O cleavage but also C-C coupling, while potassium promotes the desorption of alcohols via electrostatic interaction with hydroxyls, thereby enabling preferential formation of C2-4OH.
- Subjects :
- Science
Subjects
Details
- Language :
- English
- ISSN :
- 20411723
- Volume :
- 14
- Issue :
- 1
- Database :
- Directory of Open Access Journals
- Journal :
- Nature Communications
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.5dcd99645a84c8b9757872612191c31
- Document Type :
- article
- Full Text :
- https://doi.org/10.1038/s41467-023-42325-z