Back to Search Start Over

Spatial and temporal metagenomics of river compartments reveals viral community dynamics in an urban impacted stream

Authors :
Josué Rodríguez-Ramos
Angela Oliverio
Mikayla A. Borton
Robert Danczak
Birgit M. Mueller
Hanna Schulz
Jared Ellenbogen
Rory M. Flynn
Rebecca A. Daly
LeAundra Schopflin
Michael Shaffer
Amy Goldman
Joerg Lewandowski
James C. Stegen
Kelly C. Wrighton
Source :
Frontiers in Microbiomes, Vol 2 (2023)
Publication Year :
2023
Publisher :
Frontiers Media S.A., 2023.

Abstract

Although river ecosystems constitute a small fraction of Earth’s total area, they are critical modulators of microbially and virally orchestrated global biogeochemical cycles. However, most studies either use data that is not spatially resolved or is collected at timepoints that do not reflect the short life cycles of microorganisms. To address this gap, we assessed how viral and microbial communities change over a 48-hour period by sampling surface water and pore water compartments of the wastewater-impacted River Erpe in Germany. We sampled every 3 hours resulting in 32 samples for which we obtained metagenomes along with geochemical and metabolite measurements. From our metagenomes, we identified 6,500 viral and 1,033 microbial metagenome assembled genomes (MAGs) and found distinct community membership and abundance associated with each river compartment (e.g., Competibacteraceae in surfacewater and Sulfurimonadaceae in pore water). We show that 17% of our viral MAGs clustered to viruses from other ecosystems like wastewater treatment plants and rivers. Our results also indicated that 70% of the viral community was persistent in surface waters, whereas only 13% were persistent in the pore waters taken from the hyporheic zone. Finally, we predicted linkages between 73 viral genomes and 38 microbial genomes. These putatively linked hosts included members of the Competibacteraceae, which we suggest are potential contributors to river carbon and nitrogen cycling via denitrification and nitrogen fixation. Together, these findings demonstrate that members of the surface water microbiome from this urban river are stable over multiple diurnal cycles. These temporal insights raise important considerations for ecosystem models attempting to constrain dynamics of river biogeochemical cycles.

Details

Language :
English
ISSN :
28134338
Volume :
2
Database :
Directory of Open Access Journals
Journal :
Frontiers in Microbiomes
Publication Type :
Academic Journal
Accession number :
edsdoj.5dcc07c18d5e4384a59d8a1508855007
Document Type :
article
Full Text :
https://doi.org/10.3389/frmbi.2023.1199766