Back to Search
Start Over
Stereochemical criteria for prediction of the effects of proline mutations on protein stability.
- Source :
- PLoS Computational Biology, Vol 3, Iss 12, p e241 (2007)
- Publication Year :
- 2007
- Publisher :
- Public Library of Science (PLoS), 2007.
-
Abstract
- When incorporated into a polypeptide chain, proline (Pro) differs from all other naturally occurring amino acid residues in two important respects. The phi dihedral angle of Pro is constrained to values close to -65 degrees and Pro lacks an amide hydrogen. Consequently, mutations which result in introduction of Pro can significantly affect protein stability. In the present work, we describe a procedure to accurately predict the effect of Pro introduction on protein thermodynamic stability. Seventy-seven of the 97 non-Pro amino acid residues in the model protein, CcdB, were individually mutated to Pro, and the in vivo activity of each mutant was characterized. A decision tree to classify the mutation as perturbing or nonperturbing was created by correlating stereochemical properties of mutants to activity data. The stereochemical properties including main chain dihedral angle phi and main chain amide H-bonds (hydrogen bonds) were determined from 3D models of the mutant proteins built using MODELLER. We assessed the performance of the decision tree on a large dataset of 163 single-site Pro mutations of T4 lysozyme, 74 nsSNPs, and 52 other Pro substitutions from the literature. The overall accuracy of this algorithm was found to be 81% in the case of CcdB, 77% in the case of lysozyme, 76% in the case of nsSNPs, and 71% in the case of other Pro substitution data. The accuracy of Pro scanning mutagenesis for secondary structure assignment was also assessed and found to be at best 69%. Our prediction procedure will be useful in annotating uncharacterized nsSNPs of disease-associated proteins and for protein engineering and design.
- Subjects :
- Biology (General)
QH301-705.5
Subjects
Details
- Language :
- English
- ISSN :
- 1553734X and 15537358
- Volume :
- 3
- Issue :
- 12
- Database :
- Directory of Open Access Journals
- Journal :
- PLoS Computational Biology
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.5dae1fd646224f5cbc4ecd953189ed0a
- Document Type :
- article
- Full Text :
- https://doi.org/10.1371/journal.pcbi.0030241