Back to Search Start Over

Direct detection of Corynebacterium striatum, Corynebacterium propinquum, and Corynebacterium simulans in sputum samples by high-resolution melt curve analysis

Authors :
Shuai Xu
Xiaotong Qiu
Xuexin Hou
Haijian Zhou
Dongke Chen
Xuebing Wang
Lichao Han
Dan Li
Lina Sun
Xingzhao Ji
Minghui Li
Jingshan Zhang
Mengtong Li
Zhenjun Li
Source :
BMC Infectious Diseases, Vol 21, Iss 1, Pp 1-9 (2021)
Publication Year :
2021
Publisher :
BMC, 2021.

Abstract

Abstract Background Pulmonary infections caused by non-diphtheriae corynebacteria are increasing. However, rapid identification of Corynebacterium species poses a challenge due to the low genetic variation within the genus. Methods Three reference strains and 99 clinical isolates were used in this study. A qPCR followed by high-resolution melting (HRM) targeting ssrA was performed to simultaneously identify C. striatum, C. propinquum and C. simulans. To further evaluate this assay’s performance, 88 clinical sputum samples were tested by HRM and the detection results were compared with those of the traditional culture method and multiple cross-displacement amplification (MCDA) assay. Results The melting curve produced by a pair of universal primers generated species-specific HRM curve profiles and could distinguish the three target species from other related bacteria. The limit of detection of HRM assay for DNA from the three purified Corynebacterium species was 100 fg. Compared with the culture method, HRM detected 22 additional positive specimens, representing a 23.9% relative increase in detection rate. The HRM assay had 98.4% (95% confidence interval [CI], 90.5–99.9%) sensitivity and 100% (95% CI, 82.8–100%) specificity. Additionally, 95.5% concordance between HRM and MCDA (κ = 0.89 [95% CI, 0.79–0.99]) was noted. Conclusions The HRM assay was a simple, rapid, sensitive, and specific diagnostic tool for detecting C. striatum, C. propinquum, and C. simulans, with the potential to contribute to early diagnosis, epidemiological surveillance, and rapid response to outbreak.

Details

Language :
English
ISSN :
14712334
Volume :
21
Issue :
1
Database :
Directory of Open Access Journals
Journal :
BMC Infectious Diseases
Publication Type :
Academic Journal
Accession number :
edsdoj.5d8da932102c4358bd6c1932d1750ddc
Document Type :
article
Full Text :
https://doi.org/10.1186/s12879-020-05633-z