Back to Search Start Over

Otx2 and Oct4 Drive Early Enhancer Activation during Embryonic Stem Cell Transition from Naive Pluripotency

Authors :
Shen-Hsi Yang
Tüzer Kalkan
Claire Morissroe
Hendrik Marks
Hendrik Stunnenberg
Austin Smith
Andrew D. Sharrocks
Source :
Cell Reports, Vol 7, Iss 6, Pp 1968-1981 (2014)
Publication Year :
2014
Publisher :
Elsevier, 2014.

Abstract

Embryonic stem cells (ESCs) are unique in that they have the capacity to differentiate into all of the cell types in the body. We know a lot about the complex transcriptional control circuits that maintain the naive pluripotent state under self-renewing conditions but comparatively less about how cells exit from this state in response to differentiation stimuli. Here, we examined the role of Otx2 in this process in mouse ESCs and demonstrate that it plays a leading role in remodeling the gene regulatory networks as cells exit from ground state pluripotency. Otx2 drives enhancer activation through affecting chromatin marks and the activity of associated genes. Mechanistically, Oct4 is required for Otx2 expression, and reciprocally, Otx2 is required for efficient Oct4 recruitment to many enhancer regions. Therefore, the Oct4-Otx2 regulatory axis actively establishes a new regulatory chromatin landscape during the early events that accompany exit from ground state pluripotency.

Subjects

Subjects :
Biology (General)
QH301-705.5

Details

Language :
English
ISSN :
22111247
Volume :
7
Issue :
6
Database :
Directory of Open Access Journals
Journal :
Cell Reports
Publication Type :
Academic Journal
Accession number :
edsdoj.5d756686d44647c4b90b13749a5d7b2c
Document Type :
article
Full Text :
https://doi.org/10.1016/j.celrep.2014.05.037