Back to Search Start Over

Superconductivity in a breathing kagome metals ROs2 (R = Sc, Y, Lu)

Authors :
Karolina Górnicka
Michał J. Winiarski
Dorota I. Walicka
Tomasz Klimczuk
Source :
Scientific Reports, Vol 13, Iss 1, Pp 1-11 (2023)
Publication Year :
2023
Publisher :
Nature Portfolio, 2023.

Abstract

Abstract We have successfully synthesized three osmium-based hexagonal Laves compounds ROs2 (R = Sc, Y, Lu), and discussed their physical properties. LeBail refinement of pXRD data confirms that all compounds crystallize in the hexagonal centrosymmetric MgZn2-type structure (P6 3 /mmc, No. 194). The refined lattice parameters are a = b = 5.1791(1) Å and c = 8.4841(2) Å for ScOs2, a = b = 5.2571(3) Å and c = 8.6613(2) Å for LuOs2 and a = b = 5.3067(6) Å and c = 8.7904(1) Å for YOs2. ROs2 Laves phases can be viewed as a stacking of kagome nets interleaved with triangular layers. Temperature-dependent magnetic susceptibility, resistivity and heat capacity measurements confirm bulk superconductivity at critical temperatures, T c , of 5.36, 4.55, and 3.47 K for ScOs2, YOs2, and LuOs2, respectively. We have shown that all investigated Laves compounds are weakly-coupled type-II superconductors. DFT calculations revealed that the band structure of ROs2 is intricate due to multiple interacting d orbitals of Os and R. Nonetheless, the kagome-derived bands maintain their overall shape, and the Fermi level crosses a number of bands that originate from the kagome flat bands, broadened by interlayer interaction. As a result, ROs2 can be classified as (breathing) kagome metal superconductors.

Subjects

Subjects :
Medicine
Science

Details

Language :
English
ISSN :
20452322
Volume :
13
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
edsdoj.5d70a13c348f471a9e41f9b633b9a1c0
Document Type :
article
Full Text :
https://doi.org/10.1038/s41598-023-43621-w