Back to Search Start Over

Determination of Phenols Isomers in Water by Novel Nanosilica/Polydimethylsiloxane-Coated Stirring Bar Combined with High Performance Liquid Chromatography-Fourier Transform Infrared Spectroscopy

Authors :
Bei Zheng
Wentao Li
Lin Liu
Xin Wang
Chen Chen
Zhiyong Yu
Hongyan Li
Source :
Scientific Reports, Vol 7, Iss 1, Pp 1-10 (2017)
Publication Year :
2017
Publisher :
Nature Portfolio, 2017.

Abstract

Abstract A novel nanosilica/polydimethylsiloxane (SiO2/PDMS) coated stirring bar was adopted in the sorption extraction (SBSE) of phenols in water, and the high performance liquid chromatography-fourier transform infrared spectroscopy (HPLC-FTIR) was subsequently used to determination of phenol concentration. The SiO2/PDMS coating was prepared by sol-gel method and characterized with respect to morphology and specific surface area. The results of field-emission scanning electron microscope (FE-SEM) and N2 adsorption-desorption as well as phenol adsorption experiments denoted that SiO2/PDMS has larger surface area and better adsorption capacity than commercial PDMS. The extraction efficiency of phenol with SiO2/PDMS coated stirring bar was optimized in terms of ion strength, flow rate of phenol-involved influent, type of desorption solvent and desorption time. More than 75% of phenol desorption efficiency could be kept even after 50 cycles of extraction, indicating the high stability of the SiO2/PDMS coated stirring bar. Approximately 0.16 mg/L 2, 5-dimethylphenol (2, 5-DMP), which was 34-fold more toxic than phenol, was detected in water through HPLC-FTIR. However, 2, 5-DMP could be oxidized to 5-methy-2-hydroxy benzaldehyde after disinfection in drinking water treatment process. Therefore, the proposed method of SiO2/PDMS-SBSE-HPLC-FTIR is successfully applied in the analysis of phenols isomers in aqueous environment.

Subjects

Subjects :
Medicine
Science

Details

Language :
English
ISSN :
20452322
Volume :
7
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
edsdoj.5d6e484bf52c4f3fbdbd21aef50d023f
Document Type :
article
Full Text :
https://doi.org/10.1038/s41598-017-09050-2