Back to Search Start Over

Remarks on complexities and entropies for singularity categories

Authors :
Takahashi, Ryo
Source :
Comptes Rendus. Mathématique, Vol 361, Iss G10, Pp 1611-1623 (2023)
Publication Year :
2023
Publisher :
Académie des sciences, 2023.

Abstract

Let $R$ be a commutative noetherian local ring which is singular and has an isolated singularity. Let $\mathsf {D_{sg}}(R)$ be the singularity category of $R$ in the sense of Buchweitz and Orlov. In this paper, we find real numbers $t$ such that the complexity $\delta _t(G,X)$ in the sense of Dimitrov, Haiden, Katzarkov and Kontsevich vanishes for any split generator $G$ of $\mathsf {D_{sg}}(R)$ and any object $X$ of $\mathsf {D_{sg}}(R)$. In particular, the entropy $\mathrm{h}_t(F)$ of an exact endofunctor $F$ of $\mathsf {D_{sg}}(R)$ is not defined for such numbers $t$.

Subjects

Subjects :
Mathematics
QA1-939

Details

Language :
English, French
ISSN :
17783569
Volume :
361
Issue :
G10
Database :
Directory of Open Access Journals
Journal :
Comptes Rendus. Mathématique
Publication Type :
Academic Journal
Accession number :
edsdoj.5d4295bc7e5740fba811743e12ad3841
Document Type :
article
Full Text :
https://doi.org/10.5802/crmath.482