Back to Search
Start Over
Remarks on complexities and entropies for singularity categories
- Source :
- Comptes Rendus. Mathématique, Vol 361, Iss G10, Pp 1611-1623 (2023)
- Publication Year :
- 2023
- Publisher :
- Académie des sciences, 2023.
-
Abstract
- Let $R$ be a commutative noetherian local ring which is singular and has an isolated singularity. Let $\mathsf {D_{sg}}(R)$ be the singularity category of $R$ in the sense of Buchweitz and Orlov. In this paper, we find real numbers $t$ such that the complexity $\delta _t(G,X)$ in the sense of Dimitrov, Haiden, Katzarkov and Kontsevich vanishes for any split generator $G$ of $\mathsf {D_{sg}}(R)$ and any object $X$ of $\mathsf {D_{sg}}(R)$. In particular, the entropy $\mathrm{h}_t(F)$ of an exact endofunctor $F$ of $\mathsf {D_{sg}}(R)$ is not defined for such numbers $t$.
- Subjects :
- Mathematics
QA1-939
Subjects
Details
- Language :
- English, French
- ISSN :
- 17783569
- Volume :
- 361
- Issue :
- G10
- Database :
- Directory of Open Access Journals
- Journal :
- Comptes Rendus. Mathématique
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.5d4295bc7e5740fba811743e12ad3841
- Document Type :
- article
- Full Text :
- https://doi.org/10.5802/crmath.482