Back to Search Start Over

Magnetic resonance diffusion tensor imaging applied to rat model of contrast-induced acute kidney injury

Authors :
Bin Wang
Junjie Li
Yongfang Wang
Source :
PeerJ, Vol 9, p e10620 (2021)
Publication Year :
2021
Publisher :
PeerJ Inc., 2021.

Abstract

Objectives In this preclinical investigation, the feasibility of using diffusion tensor imaging (DTI) to study contrast-induced acute kidney injury (CIAKI) is explored, comparing radiographic outcomes with histopathologic and immunohistochemical findings after repeated animal exposures to iodinated contrast agent. Materials and Methods Forty-five male wistar rats were allocated to three groups (n = 15 each), each receiving two separate injections 1 day apart: group 1 (iodixanol then saline); group 2 (iodixanol twice); and control group (saline twice). Five rats were then randomly selected from each group at three separate time points (1 h, 24 h, and 120 h) for magnetic resonance imaging (MRI). Upon MRI completion, the animals were sacrificed, examining renal tissue and serum creatinine level. DTI data served to calculate fractional anisotropy (FA) and apparent diffusion coefficient (ADC). Results FA values were significantly lower in group 2 than in the others. Compared with controls, FA assessments at 1 h, 24 h, and 120 h after injections commenced were significantly lower in group 2; and ADC was significantly more pronounced at 24 h. Serum creatinine levels at 24 h were markedly elevated in both groups 1 and 2. Pearson correlation analysis revealed significant negative correlations between FA (r = −0.730; p < 0.05) or ADC (r = −0.827; p < 0.05) and tubular injury and between FA (r = −0.563; p < 0.05) or ADC (r = −0.805; p < 0.05) and hypoxia-inducible factor-1α. Conclusions Analytic approaches to DTI with better reproducibility should aid in monitoring the early pathophysiologic derangements of CIAKI, thus facilitating timely reversal of the detrimental effects.

Details

Language :
English
ISSN :
21678359
Volume :
9
Database :
Directory of Open Access Journals
Journal :
PeerJ
Publication Type :
Academic Journal
Accession number :
edsdoj.5d2ca8cf2f5549c48af41fa94e8384d8
Document Type :
article
Full Text :
https://doi.org/10.7717/peerj.10620