Back to Search Start Over

Short-Term Electricity Load Forecasting Based on Improved Data Decomposition and Hybrid Deep-Learning Models

Authors :
Jiayu Chen
Lisang Liu
Kaiqi Guo
Shurui Liu
Dongwei He
Source :
Applied Sciences, Vol 14, Iss 14, p 5966 (2024)
Publication Year :
2024
Publisher :
MDPI AG, 2024.

Abstract

Short-term power load forecasting plays a key role in daily scheduling and ensuring stable power system operation. The problem of the volatility of the power load sequence and poor prediction accuracy is addressed. In this study, a learning model integrating intelligent optimization algorithms is proposed, which combines an ensemble-learning model based on long short-term memory (LSTM), variational modal decomposition (VMD) and the multi-strategy optimization dung beetle algorithm (MODBO). The aim is to address the shortcomings of the dung beetle optimizer algorithm (DBO) in power load forecasting, such as its time-consuming nature, low accuracy, and ease of falling into local optimum. In this paper, firstly, the dung beetle algorithm is initialized using a lens-imaging reverse-learning strategy to avoid premature convergence of the algorithm. Second, a spiral search strategy is used to update the dynamic positions of the breeding dung beetles to balance the local and global search capabilities. Then, the positions of the foraging dung beetles are updated using an optimal value bootstrapping strategy to avoid falling into a local optimum. Finally, the dynamic-weighting coefficients are used to update the position of the stealing dung beetle to improve the global search ability and convergence of the algorithm. The proposed new algorithm is named MVMO-LSTM. Compared to traditional intelligent algorithms, the four-quarter averages of the RMSE, MAE and R2 of MVMO-LSTM are improved by 0.1147–0.7989 KW, 0.09799–0.6937 KW, and 1.00–13.05%, respectively. The experimental results show that the MVMO-LSTM proposed in this paper not only solves the shortcomings of the DBO but also enhances the stability, global optimization capability and information utilization of the model.

Details

Language :
English
ISSN :
20763417
Volume :
14
Issue :
14
Database :
Directory of Open Access Journals
Journal :
Applied Sciences
Publication Type :
Academic Journal
Accession number :
edsdoj.5cc677fcafbc4b2ba82c7467b8940bdc
Document Type :
article
Full Text :
https://doi.org/10.3390/app14145966