Back to Search Start Over

Comparative Analysis of Hydrosol Volatile Components of Citrus × Aurantium ‘Daidai’ and Citrus × Aurantium L. Dried Buds with Different Extraction Processes Using Headspace-Solid-Phase Microextraction with Gas Chromatography–Mass Spectrometry

Authors :
Xinyue Xie
Huiling Xue
Baoshan Ma
Xiaoqian Guo
Yanli Xia
Yuxia Yang
Ke Xu
Ting Li
Xia Luo
Source :
Molecules, Vol 29, Iss 15, p 3498 (2024)
Publication Year :
2024
Publisher :
MDPI AG, 2024.

Abstract

This work used headspace solid-phase microextraction with gas chromatography–mass spectrometry (HS-SPME-GC–MS) to analyze the volatile components of hydrosols of Citrus × aurantium ‘Daidai’ and Citrus × aurantium L. dried buds (CAVAs and CADBs) by immersion and ultrasound–microwave synergistic-assisted steam distillation. The results show that a total of 106 volatiles were detected in hydrosols, mainly alcohols, alkenes, and esters, and the high content components of hydrosols were linalool, α-terpineol, and trans-geraniol. In terms of variety, the total and unique components of CAVA hydrosols were much higher than those of CADB hydrosols; the relative contents of 13 components of CAVA hydrosols were greater than those of CADB hydrosols, with geranyl acetate up to 15-fold; all hydrosols had a citrus, floral, and woody aroma. From the pretreatment, more volatile components were retained in the immersion; the relative contents of linalool and α-terpineol were increased by the ultrasound–microwave procedure; and the ultrasound–microwave procedure was favorable for the stimulation of the aroma of CAVA hydrosols, but it diminished the aroma of the CADB hydrosols. This study provides theoretical support for in-depth exploration based on the medicine food homology properties of CAVA and for improving the utilization rate of waste resources.

Details

Language :
English
ISSN :
14203049
Volume :
29
Issue :
15
Database :
Directory of Open Access Journals
Journal :
Molecules
Publication Type :
Academic Journal
Accession number :
edsdoj.5cc0e1fb94d14fe78ad9c9b228d0e1f4
Document Type :
article
Full Text :
https://doi.org/10.3390/molecules29153498