Back to Search Start Over

Determining optimal neutral reactor to limit overvoltages and duration of secondary arc of transmission lines

Authors :
Abolfazl Mohammadi
Moein Abedini
Mahdi Davarpanah
Source :
IET Generation, Transmission & Distribution, Vol 17, Iss 6, Pp 1321-1332 (2023)
Publication Year :
2023
Publisher :
Wiley, 2023.

Abstract

Abstract Even though shunt compensation of transmission lines (TLs) is a common practice to limit the overvoltages stemming from the Ferranti effect, it may cause transient and steady‐state resonant overvoltages when one phase is left open due to the single‐pole‐open condition following the temporary phase‐to‐ground (Ph‐g) fault. Furthermore, the existing shunt reactors potentially increase the duration of the secondary arc current at the fault point and hence prevent offering fast single‐pole reclosing. To exploit the mentioned issues, in recent studies, a neutral reactor is introduced, which is installed in the neutral point of the shunt reactors; nonetheless, obtaining the appropriate amount of it is remarkably challenging. In this paper, an optimal neutral reactor (ONR) is determined based on an optimization problem, which minimizes the neutral reactor cost subject to limiting both resonant overvoltages and the duration of the secondary arc current. In modelling, the Laplace domain is employed rather than the phasor domain to consider both transient and steady‐state conditions since this technique allows having better control over transient overvoltages as well as transient secondary arc.

Details

Language :
English
ISSN :
17518695 and 17518687
Volume :
17
Issue :
6
Database :
Directory of Open Access Journals
Journal :
IET Generation, Transmission & Distribution
Publication Type :
Academic Journal
Accession number :
edsdoj.5c53339ba9c54877a949cb0cc9f1b78b
Document Type :
article
Full Text :
https://doi.org/10.1049/gtd2.12737