Back to Search Start Over

Detection of glaucomatous optic neuropathy with spectral-domain optical coherence tomography: a retrospective training and validation deep-learning analysis

Authors :
An Ran Ran, MD
Carol Y Cheung, PhD
Xi Wang, ME
Hao Chen, PhD
Lu-yang Luo, BE
Poemen P Chan, FRCS
Mandy O M Wong, FRCS
Robert T Chang, MD
Suria S Mannil, MD
Alvin L Young, ProfFRCS
Hon-wah Yung, FRCS
Chi Pui Pang, ProfDPhil
Pheng-Ann Heng, ProfPhD
Clement C Tham, ProfFCOphthHK
Source :
The Lancet: Digital Health, Vol 1, Iss 4, Pp e172-e182 (2019)
Publication Year :
2019
Publisher :
Elsevier, 2019.

Abstract

Summary: Background: Spectral-domain optical coherence tomography (SDOCT) can be used to detect glaucomatous optic neuropathy, but human expertise in interpretation of SDOCT is limited. We aimed to develop and validate a three-dimensional (3D) deep-learning system using SDOCT volumes to detect glaucomatous optic neuropathy. Methods: We retrospectively collected a dataset including 4877 SDOCT volumes of optic disc cube for training (60%), testing (20%), and primary validation (20%) from electronic medical and research records at the Chinese University of Hong Kong Eye Centre (Hong Kong, China) and the Hong Kong Eye Hospital (Hong Kong, China). Residual network was used to build the 3D deep-learning system. Three independent datasets (two from Hong Kong and one from Stanford, CA, USA), including 546, 267, and 1231 SDOCT volumes, respectively, were used for external validation of the deep-learning system. Volumes were labelled as having or not having glaucomatous optic neuropathy according to the criteria of retinal nerve fibre layer thinning on reliable SDOCT images with position-correlated visual field defect. Heatmaps were generated for qualitative assessments. Findings: 6921 SDOCT volumes from 1 384 200 two-dimensional cross-sectional scans were studied. The 3D deep-learning system had an area under the receiver operation characteristics curve (AUROC) of 0·969 (95% CI 0·960–0·976), sensitivity of 89% (95% CI 83–93), specificity of 96% (92–99), and accuracy of 91% (89–93) in the primary validation, outperforming a two-dimensional deep-learning system that was trained on en face fundus images (AUROC 0·921 [0·905–0·937]; p

Details

Language :
English
ISSN :
25897500
Volume :
1
Issue :
4
Database :
Directory of Open Access Journals
Journal :
The Lancet: Digital Health
Publication Type :
Academic Journal
Accession number :
edsdoj.5c3836d439143c090f07801a8d89fcf
Document Type :
article
Full Text :
https://doi.org/10.1016/S2589-7500(19)30085-8