Back to Search Start Over

Recovering the shape of an equilateral quantum tree with the Dirichlet conditions at the pendant vertices

Authors :
Anastasia Dudko
Oleksandr Lesechko
Vyacheslav Pivovarchik
Source :
Opuscula Mathematica, Vol 44, Iss 5, Pp 689-705 (2024)
Publication Year :
2024
Publisher :
AGH Univeristy of Science and Technology Press, 2024.

Abstract

We consider two spectral problems on an equilateral rooted tree with the standard (continuity and Kirchhoff's type) conditions at the interior vertices (except of the root if it is interior) and Dirichlet conditions at the pendant vertices (except of the root if it is pendant). For the first (Neumann) problem we impose the standard conditions (if the root is an interior vertex) or Neumann condition (if the root is a pendant vertex) at the root, while for the second (Dirichlet) problem we impose the Dirichlet condition at the root. We show that for caterpillar trees the spectra of the Neumann problem and of the Dirichlet problem uniquely determine the shape of the tree. Also, we present an example of co-spectral snowflake graphs.

Details

Language :
English
ISSN :
12329274
Volume :
44
Issue :
5
Database :
Directory of Open Access Journals
Journal :
Opuscula Mathematica
Publication Type :
Academic Journal
Accession number :
edsdoj.5c1853e87b364f51afdb8cb7ff9dc9ed
Document Type :
article
Full Text :
https://doi.org/10.7494/OpMath.2024.44.5.689