Back to Search Start Over

Protective effect of synbiotic combination of Lactobacillus plantarum SC-5 and olive oil extract tyrosol in a murine model of ulcerative colitis

Authors :
Fazheng Yu
Xueyu Hu
HongLin Ren
Xiaoxu Wang
Ruoran Shi
Jian Guo
Jiang Chang
Xiaoshi Zhou
Yuanyuan Jin
Yansong Li
Zengshan Liu
Pan Hu
Source :
Journal of Translational Medicine, Vol 22, Iss 1, Pp 1-18 (2024)
Publication Year :
2024
Publisher :
BMC, 2024.

Abstract

Abstract Background Ulcerative colitisis (UC) classified as a form of inflammatory bowel diseases (IBD) characterized by chronic, nonspecific, and recurrent symptoms with a poor prognosis. Common clinical manifestations of UC include diarrhea, fecal bleeding, and abdominal pain. Even though anti-inflammatory drugs can help alleviate symptoms of IBD, their long-term use is limited due to potential side effects. Therefore, alternative approaches for the treatment and prevention of inflammation in UC are crucial. Methods This study investigated the synergistic mechanism of Lactobacillus plantarum SC-5 (SC-5) and tyrosol (TY) combination (TS) in murine colitis, specifically exploring their regulatory activity on the dextran sulfate sodium (DSS)-induced inflammatory pathways (NF-κB and MAPK) and key molecular targets (tight junction protein). The effectiveness of 1 week of treatment with SC-5, TY, or TS was evaluated in a DSS-induced colitis mice model by assessing colitis morbidity and colonic mucosal injury (n = 9). To validate these findings, fecal microbiota transplantation (FMT) was performed by inoculating DSS-treated mice with the microbiota of TS-administered mice (n = 9). Results The results demonstrated that all three treatments effectively reduced colitis morbidity and protected against DSS-induced UC. The combination treatment, TS, exhibited inhibitory effects on the DSS-induced activation of mitogen-activated protein kinase (MAPK) and negatively regulated NF-κB. Furthermore, TS maintained the integrity of the tight junction (TJ) structure by regulating the expression of zona-occludin-1 (ZO-1), Occludin, and Claudin-3 (p

Details

Language :
English
ISSN :
14795876
Volume :
22
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Journal of Translational Medicine
Publication Type :
Academic Journal
Accession number :
edsdoj.5bf557de3ac74ba5907e033c4a3a2e11
Document Type :
article
Full Text :
https://doi.org/10.1186/s12967-024-05026-9