Back to Search Start Over

Steganalysis of Compressed Speech Based on Association Rule Mining

Authors :
Feipeng Gao
Jie Yang
Peng Xu
Source :
IEEE Access, Vol 10, Pp 103337-103348 (2022)
Publication Year :
2022
Publisher :
IEEE, 2022.

Abstract

Currently, steganography based on compressed speech streams is gathering more and more attention. Meanwhile, it poses a huge threat to cyber security. As a counter technique, steganalysis can detect whether an illegal secret message is embedded in a compressed speech. To further improve the detection performance of current methods, a novel steganalysis method based on codeword association rule mining (CARM) is proposed in this paper. Firstly, we analyzed the spatiotemporal relationships between codewords in compressed speech. Secondly, the steganography-sensitivity codeword association rule base in training set was built based on the confidence change of codeword association rules before and after steganography. Thirdly, the steganography characteristic index and the corresponding dynamic partition threshold in validation set were computed to determine whether the compressed speech segment contains covert communication or not. Finally, comprehensive experiments were conducted to evaluate the performance of the proposed CARM steganalysis method under various conditions, including different association rule patterns, whether to use dynamic partition threshold, different embedding rates, different speech lengths, etc. The experimental results verify that CARM can achieve better performance than the comparison methods. In addition, the detection accuracy of CARM method can be improved significantly by using dynamic partition threshold at low embedding rates.

Details

Language :
English
ISSN :
21693536
Volume :
10
Database :
Directory of Open Access Journals
Journal :
IEEE Access
Publication Type :
Academic Journal
Accession number :
edsdoj.5beb404fe74d462596bfa9202c34abe3
Document Type :
article
Full Text :
https://doi.org/10.1109/ACCESS.2022.3209703