Back to Search Start Over

Enhancing mitosis quantification and detection in meningiomas with computational digital pathology

Authors :
Hongyan Gu
Chunxu Yang
Issa Al-kharouf
Shino Magaki
Nelli Lakis
Christopher Kazu Williams
Sallam Mohammad Alrosan
Ellie Kate Onstott
Wenzhong Yan
Negar Khanlou
Inma Cobos
Xinhai Robert Zhang
Neda Zarrin-Khameh
Harry V. Vinters
Xiang Anthony Chen
Mohammad Haeri
Source :
Acta Neuropathologica Communications, Vol 12, Iss 1, Pp 1-15 (2024)
Publication Year :
2024
Publisher :
BMC, 2024.

Abstract

Abstract Mitosis is a critical criterion for meningioma grading. However, pathologists’ assessment of mitoses is subject to significant inter-observer variation due to challenges in locating mitosis hotspots and accurately detecting mitotic figures. To address this issue, we leverage digital pathology and propose a computational strategy to enhance pathologists’ mitosis assessment. The strategy has two components: (1) A depth-first search algorithm that quantifies the mathematically maximum mitotic count in 10 consecutive high-power fields, which can enhance the preciseness, especially in cases with borderline mitotic count. (2) Implementing a collaborative sphere to group a set of pathologists to detect mitoses under each high-power field, which can mitigate subjective random errors in mitosis detection originating from individual detection errors. By depth-first search algorithm (1) , we analyzed 19 meningioma slides and discovered that the proposed algorithm upgraded two borderline cases verified at consensus conferences. This improvement is attributed to the algorithm’s ability to quantify the mitotic count more comprehensively compared to other conventional methods of counting mitoses. In implementing a collaborative sphere (2) , we evaluated the correctness of mitosis detection from grouped pathologists and/or pathology residents, where each member of the group annotated a set of 48 high-power field images for mitotic figures independently. We report that groups with sizes of three can achieve an average precision of 0.897 and sensitivity of 0.699 in mitosis detection, which is higher than an average pathologist in this study (precision: 0.750, sensitivity: 0.667). The proposed computational strategy can be integrated with artificial intelligence workflow, which envisions the future of achieving a rapid and robust mitosis assessment by interactive assisting algorithms that can ultimately benefit patient management.

Details

Language :
English
ISSN :
20515960
Volume :
12
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Acta Neuropathologica Communications
Publication Type :
Academic Journal
Accession number :
edsdoj.5b8b379633eb4d5baddc254cb8cd856d
Document Type :
article
Full Text :
https://doi.org/10.1186/s40478-023-01707-6