Back to Search Start Over

Machine learning of EEG spectra classifies unconsciousness during GABAergic anesthesia.

Authors :
John H Abel
Marcus A Badgeley
Benyamin Meschede-Krasa
Gabriel Schamberg
Indie C Garwood
Kimaya Lecamwasam
Sourish Chakravarty
David W Zhou
Matthew Keating
Patrick L Purdon
Emery N Brown
Source :
PLoS ONE, Vol 16, Iss 5, p e0246165 (2021)
Publication Year :
2021
Publisher :
Public Library of Science (PLoS), 2021.

Abstract

In current anesthesiology practice, anesthesiologists infer the state of unconsciousness without directly monitoring the brain. Drug- and patient-specific electroencephalographic (EEG) signatures of anesthesia-induced unconsciousness have been identified previously. We applied machine learning approaches to construct classification models for real-time tracking of unconscious state during anesthesia-induced unconsciousness. We used cross-validation to select and train the best performing models using 33,159 2s segments of EEG data recorded from 7 healthy volunteers who received increasing infusions of propofol while responding to stimuli to directly assess unconsciousness. Cross-validated models of unconsciousness performed very well when tested on 13,929 2s EEG segments from 3 left-out volunteers collected under the same conditions (median volunteer AUCs 0.99-0.99). Models showed strong generalization when tested on a cohort of 27 surgical patients receiving solely propofol collected in a separate clinical dataset under different circumstances and using different hardware (median patient AUCs 0.95-0.98), with model predictions corresponding with actions taken by the anesthesiologist during the cases. Performance was also strong for 17 patients receiving sevoflurane (alone or in addition to propofol) (median AUCs 0.88-0.92). These results indicate that EEG spectral features can predict unconsciousness, even when tested on a different anesthetic that acts with a similar neural mechanism. With high performance predictions of unconsciousness, we can accurately monitor anesthetic state, and this approach may be used to engineer infusion pumps to intelligibly respond to patients' neural activity.

Subjects

Subjects :
Medicine
Science

Details

Language :
English
ISSN :
19326203
Volume :
16
Issue :
5
Database :
Directory of Open Access Journals
Journal :
PLoS ONE
Publication Type :
Academic Journal
Accession number :
edsdoj.5b7cc92e438450fa479ff7990253b3f
Document Type :
article
Full Text :
https://doi.org/10.1371/journal.pone.0246165