Back to Search Start Over

Probing cardiomyocyte mobility with multi-phase cardiac diffusion tensor MRI.

Authors :
Kévin Moulin
Ilya A Verzhbinsky
Nyasha G Maforo
Luigi E Perotti
Daniel B Ennis
Source :
PLoS ONE, Vol 15, Iss 11, p e0241996 (2020)
Publication Year :
2020
Publisher :
Public Library of Science (PLoS), 2020.

Abstract

PurposeCardiomyocyte organization and performance underlie cardiac function, but the in vivo mobility of these cells during contraction and filling remains difficult to probe. Herein, a novel trigger delay (TD) scout sequence was used to acquire high in-plane resolution (1.6 mm) Spin-Echo (SE) cardiac diffusion tensor imaging (cDTI) at three distinct cardiac phases. The objective was to characterize cardiomyocyte organization and mobility throughout the cardiac cycle in healthy volunteers.Materials and methodsNine healthy volunteers were imaged with cDTI at three distinct cardiac phases (early systole, late systole, and diastasis). The sequence used a free-breathing Spin-Echo (SE) cDTI protocol (b-values = 350s/mm2, twelve diffusion encoding directions, eight repetitions) to acquire high-resolution images (1.6x1.6x8mm3) at 3T in ~7 minutes/cardiac phase. Helix Angle (HA), Helix Angle Range (HAR), E2 angle (E2A), Transverse Angle (TA), Mean Diffusivity (MD), diffusion tensor eigenvalues (λ1-2-3), and Fractional Anisotropy (FA) in the left ventricle (LV) were characterized.ResultsImages from the patient-specific TD scout sequence demonstrated that SE cDTI acquisition was possible at early systole, late systole, and diastasis in 78%, 100% and 67% of the cases, respectively. At the mid-ventricular level, mobility (reported as median [IQR]) was observed in HAR between early systole and late systole (76.9 [72.6, 80.5]° vs 96.6 [85.9, 100.3]°, pConclusionWe demonstrate that it is possible to probe cardiomyocyte mobility using multi-phase and high resolution cDTI. In healthy volunteers, aggregate cardiomyocytes re-orient themselves more longitudinally during contraction, while cardiomyocyte sheetlets tilt radially during wall thickening. These observations provide new insights into the three-dimensional mobility of myocardial microstructure during systolic contraction.

Subjects

Subjects :
Medicine
Science

Details

Language :
English
ISSN :
19326203
Volume :
15
Issue :
11
Database :
Directory of Open Access Journals
Journal :
PLoS ONE
Publication Type :
Academic Journal
Accession number :
edsdoj.5b609e99c7042f1a91fdae7bd18ce2f
Document Type :
article
Full Text :
https://doi.org/10.1371/journal.pone.0241996