Back to Search
Start Over
Remote ischemic preconditioning causes transient cell cycle arrest and renal protection by a NF-κB–dependent Sema5B pathway
- Source :
- JCI Insight, Vol 7, Iss 14 (2022)
- Publication Year :
- 2022
- Publisher :
- American Society for Clinical investigation, 2022.
-
Abstract
- Acute kidney injury increases morbidity and mortality, and previous studies have shown that remote ischemic preconditioning (RIPC) reduces the risk of acute kidney injury after cardiac surgery. RIPC increases urinary high mobility group box protein-1 (HMGB1) levels in patients, and this correlates with kidney protection. Here, we show that RIPC reduces renal ischemia-reperfusion injury and improves kidney function in mice. Mechanistically, RIPC increases HMGB1 levels in the plasma and urine, and HMGB1 binds to TLR4 on renal tubular epithelial cells, inducing transcriptomic modulation of renal tubular epithelial cells and providing renal protection, whereas TLR4 activation on nonrenal cells was shown to contribute to renal injury. This protection is mediated by activation of induction of AMPKα and NF-κB; this induction contributes to the upregulation of Sema5b, which triggers a transient, protective G1 cell cycle arrest. In cardiac surgery patients at high risk for postoperative acute kidney injury, increased HMGB1 and Sema5b levels after RIPC were associated with renal protection after surgery. The results may help to develop future clinical treatment options for acute kidney injury.
- Subjects :
- Immunology
Nephrology
Medicine
Subjects
Details
- Language :
- English
- ISSN :
- 23793708
- Volume :
- 7
- Issue :
- 14
- Database :
- Directory of Open Access Journals
- Journal :
- JCI Insight
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.5b4605dd23ba458f874aefa40181f27b
- Document Type :
- article
- Full Text :
- https://doi.org/10.1172/jci.insight.158523