Back to Search Start Over

ROBUST AND EFFECTIVE AIRBORNE LIDAR POINT CLOUD CLASSIFICATION BASED ON HYBRID FEATURES

Authors :
L. F. Liao
S. J. Tang
J. H. Liao
W. X. Wang
X. M. Li
R. Z. Guo
Source :
The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol XLIII-B2-2022, Pp 229-235 (2022)
Publication Year :
2022
Publisher :
Copernicus Publications, 2022.

Abstract

State-of-the-art point cloud classification methods mostly process raw point clouds, using a single point as the basic unit and calculating point cloud features by searching local neighbors via the k-neighborhood method. Such methods tend to be computationally inefficient and have difficulty obtaining accurate feature descriptions due to inappropriate neighborhood selection. In this paper, we propose a robust and effective point cloud classification approach that integrates point cloud supervoxels and their locally convex connected patches into a random forest classifier. We apply a centroid cloud extracted from supervoxels into the proposed classifier, which effectively improves the point cloud feature calculation accuracy and reduces the computational cost. Considering the different types of point cloud feature descriptions, we divide features into three categories (point-based, eigen-based, and grid-based) and accordingly design three distinct feature calculation strategies to improve feature reliability. The proposed method achieves state-of-the-art performance, with average F1-scores of 89.16%, respectively. The successful classification of point clouds with great variation in elevation also demonstrates the reliability of the proposed method in challenging scenes to some extents.

Details

Language :
English
ISSN :
16821750 and 21949034
Volume :
XLIII-B2-2022
Database :
Directory of Open Access Journals
Journal :
The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Publication Type :
Academic Journal
Accession number :
edsdoj.5a872e6d82614ed89c90022f9efb1aef
Document Type :
article
Full Text :
https://doi.org/10.5194/isprs-archives-XLIII-B2-2022-229-2022