Back to Search
Start Over
Spatiotemporal dynamics of vegetation net ecosystem productivity and its response to drought in Northwest China
- Source :
- GIScience & Remote Sensing, Vol 60, Iss 1 (2023)
- Publication Year :
- 2023
- Publisher :
- Taylor & Francis Group, 2023.
-
Abstract
- Net ecosystem productivity (NEP) quantifies magnitude of the terrestrial vegetation carbon sinks. Drought is one of the most important stressors affecting vegetation NEP. At present, the spatiotemporal dynamics of vegetation NEP in drought-prone of Northwest China (NWC) lack discussion under different climatic zones and land cover types, and the response of vegetation NEP to drought remains unclear. Hence, we estimated the vegetation NEP in NWC using ground and remote sensing data and quantified the spatiotemporal differentiation of NEP under different climatic zones and land cover types. The drought fluorescence monitoring index (DFMI) was developed to examine the relationship between vegetation NEP and drought response based on the solar-induced chlorophyll fluorescence (SIF) data. Our results suggested that vegetation carbon sinks increased significantly at 7.09 g C m−2 yr−1 in NWC during 2000–2019, mainly in northern Shaanxi, eastern and southern Gansu, and southern Ningxia. NEP showed increasing trends under different climatic zones and land cover types, but there were differences in carbon sink capacity. The strongest carbon sink capacity was in humid regions and forests, while the weakest was in arid regions and grasslands. The vegetation carbon sinks showed a non-linear relationship with the drought degree reflecting multiple trend differences, especially in forests and grasslands. The response to drought was faster and more significant in semi-arid and semi-humid transition zones and extreme humid regions when vegetation carbon sinks decreased. DFMI was a good indicator to monitor drought conditions in NWC. NEP and DFMI were an 8–20-month periodic positive correlation and showed a high correlation with high–high and low–low clustering spatially. Drought significantly weakened vegetation carbon sinks in NWC. This study emphasizes the demand to rapidly identify climatic conditions that lead to decrease significantly in vegetation carbon sinks and to formulate adaptation strategies aimed at reducing drought risk under global warming.
Details
- Language :
- English
- ISSN :
- 15481603 and 19437226
- Volume :
- 60
- Issue :
- 1
- Database :
- Directory of Open Access Journals
- Journal :
- GIScience & Remote Sensing
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.5a749e8429d4faaad74b73b2fc69a14
- Document Type :
- article
- Full Text :
- https://doi.org/10.1080/15481603.2023.2194597