Back to Search
Start Over
Flat bands, non-trivial band topology and rotation symmetry breaking in layered kagome-lattice RbTi3Bi5
- Source :
- Nature Communications, Vol 14, Iss 1, Pp 1-8 (2023)
- Publication Year :
- 2023
- Publisher :
- Nature Portfolio, 2023.
-
Abstract
- Abstract A representative class of kagome materials, AV3Sb5 (A = K, Rb, Cs), hosts several unconventional phases such as superconductivity, $${{\mathbb{Z}}}_{2}$$ Z 2 non-trivial topological states, and electronic nematic states. These can often coexist with intertwined charge-density wave states. Recently, the discovery of the isostructural titanium-based single-crystals, ATi3Bi5 (A = K, Rb, Cs), which exhibit similar multiple exotic states but without the concomitant charge-density wave, has opened an opportunity to disentangle these complex states in kagome lattices. Here, we combine high-resolution angle-resolved photoemission spectroscopy and first-principles calculations to investigate the low-lying electronic structure of RbTi3Bi5. We demonstrate the coexistence of flat bands and several non-trivial states, including type-II Dirac nodal lines and $${{\mathbb{Z}}}_{2}$$ Z 2 non-trivial topological surface states. Our findings also provide evidence for rotational symmetry breaking in RbTi3Bi5, suggesting a directionality to the electronic structure and the possible emergence of pure electronic nematicity in this family of kagome compounds.
- Subjects :
- Science
Subjects
Details
- Language :
- English
- ISSN :
- 20411723
- Volume :
- 14
- Issue :
- 1
- Database :
- Directory of Open Access Journals
- Journal :
- Nature Communications
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.5a64cc1656fc4433ad1fe294583deb8f
- Document Type :
- article
- Full Text :
- https://doi.org/10.1038/s41467-023-40515-3