Back to Search Start Over

Spike lavender essential oil attenuates hyperuricemia and induced renal injury by modulating the TLR4/NF-κB/NLRP3 signalling pathway

Authors :
Peijie Zhou
Biao Zhang
Xuan Wang
Jiawei Duan
Jinkai Li
Jie Wang
Ning Xia
Shihao Zhang
Jinghui Wang
Dongyan Guo
Chongbo Zhao
Huanxian Shi
Jiangxue Cheng
Yundong Xie
Jing Sun
Xiaofei Zhang
Source :
Arabian Journal of Chemistry, Vol 17, Iss 9, Pp 105897- (2024)
Publication Year :
2024
Publisher :
Elsevier, 2024.

Abstract

Hyperuricemia (HUA), recognized as the fourth “high” condition following hypertension, hyperlipidemia, and hyperglycemia, is a metabolic disorder that severely impairs renal function. Spike lavender essential oil (SLEO) exhibits substantial anti-inflammatory and antioxidant activities and can inhibit xanthine oxidase (XOD), suggesting its potential therapeutic potential against HUA. This of this study aimed to analyze the chemical constituents of SLEO with potential efficacy in treating HUA and to explore their mechanisms of action. Gas chromatography-mass spectrometry (GC–MS) combined with a greedy algorithm identified linalool, β-pinene, and β-caryophyllene as key active components of SLEO. Through network pharmacology “weight coefficient” method, the NOD-like signaling pathway emerged as a significant mechanism for SLEO in treating HUA. Investigating an in vitro uric acid (UA)-induced HK-2 cell model revealed that SLEO effectively inhibited the production of IL-1β and IL-18 in the supernatant of HK-2 cells compared to the NLRP3 (antagonist MCC950). Additionally, a HUA rat model demonstrated that SLEO administration significantly reduced hyperuricemia pathological indicators, such as UA, XOD, and blood urea nitrogen (BUN) levels, with renal histopathological sections showing a marked reduction in following SLEO treatment. Metabolomics and transcriptomics analyses further highlighted significant changes in differential metabolites such as arachidonic acid and glycine, as well as the regulation of differential genes such as pycard and PTGS2 in rats.Immunohistochemistry, Western blotting, molecular docking and in vitro XOD activity inhibition assays elucidated the active components mechanisms of SLEO in treating HUA and associated renal inflammation. The findings concluded that SLEO mitigates HUA and renal inflammation by modulating the arachidonic acid metabolic pathway and the NF-κB signaling pathway. Moreover, linalool, β-pinene and β-caryophyllene in SLEO were shown to reduce UA production and lower UA levels in vivo by inhibiting the TLR4/NF-κB/NLRP3 pathway, thereby alleviating HUA-induced renal injury.

Details

Language :
English
ISSN :
18785352
Volume :
17
Issue :
9
Database :
Directory of Open Access Journals
Journal :
Arabian Journal of Chemistry
Publication Type :
Academic Journal
Accession number :
edsdoj.5a641360bec84c8196972b08cbec4cf7
Document Type :
article
Full Text :
https://doi.org/10.1016/j.arabjc.2024.105897