Back to Search Start Over

Enhanced antitumor effects by docetaxel/LL37-loaded thermosensitive hydrogel nanoparticles in peritoneal carcinomatosis of colorectal cancer

Authors :
Fan R
Tong A
Li X
Gao X
Mei L
Zhou L
Zhang X
You C
Guo G
Source :
International Journal of Nanomedicine, Vol 2015, Iss default, Pp 7291-7305 (2015)
Publication Year :
2015
Publisher :
Dove Medical Press, 2015.

Abstract

Rangrang Fan,1,* Aiping Tong,1,* Xiaoling Li,1 Xiang Gao,1 Lan Mei,1 Liangxue Zhou,1 Xiaoning Zhang,2 Chao You,1 Gang Guo1 1State Key Laboratory of Biotherapy and Cancer Center, Department of Neurosurgery, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, People’s Republic of China; 2Department of Pharmacology and Pharmaceutical Sciences, School of Medicine, Tsinghua University, and Collaborative Innovation Center for Biotherapy, Beijing, People’s Republic of China *These authors contributed equally to this work Abstract: Intraperitoneal chemotherapy was explored in clinical trials as a promising strategy to improve the therapeutic effects of chemotherapy. In this work, we developed a biodegradable and injectable drug-delivery system by coencapsulation of docetaxel (Doc) and LL37 peptide polymeric nanoparticles (Doc+LL37 NPs) in a thermosensitive hydrogel system for colorectal peritoneal carcinoma therapy. Firstly, polylactic acid (PLA)-Pluronic L35-PLA (PLA-L35-PLA) was explored to prepare the biodegradable Doc+LL37 NPs using a water-in-oil-in-water double-emulsion solvent-evaporation method. Then, biodegradable and injectable thermosensitive PLA-L64-PLA hydrogel with lower sol–gel transition temperature at around body temperature was also prepared. Transmission electron microscopy revealed that the Doc+LL37 NPs formed with the PLA-L35-PLA copolymer were spherical. Fourier-transform infrared spectra certified that Doc and LL37 were encapsulated successfully. X-ray diffraction diagrams indicated that Doc was encapsulated amorphously. Intraperitoneal administration of Doc+LL37 NPs–hydrogel significantly suppressed the growth of HCT116 peritoneal carcinomatosis in vivo and prolonged the survival of tumor-bearing mice. Our results suggested that Doc+LL37 NPs–hydrogel may have potential clinical applications. Keywords: intraperitoneal chemotherapy, injectable, nanoparticles, hydrogel, coencapsulation

Details

Language :
English
ISSN :
11782013
Volume :
2015
Issue :
default
Database :
Directory of Open Access Journals
Journal :
International Journal of Nanomedicine
Publication Type :
Academic Journal
Accession number :
edsdoj.5a4f64c0f03a46bc8122cff25927585d
Document Type :
article