Back to Search Start Over

Self-assembled mPEG–PCL-g–PEI micelles for simultaneous codelivery of chemotherapeutic drugs and DNA: synthesis and characterization in vitro

Authors :
Shi S
Zhu XC
Guo QF
Wang YJ
Zuo T
Luo F
Qian ZY
Source :
International Journal of Nanomedicine, Vol 2012, Iss default, Pp 1749-1759 (2012)
Publication Year :
2012
Publisher :
Dove Medical Press, 2012.

Abstract

Shuai Shi, Xuechen Zhu, QingFa Guo, Yingjing Wang, Tao Zuo, Feng Luo, Zhiyong QianState Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, People's Republic of ChinaBackground: In this paper, a series of amphiphilic triblock copolymers based on polyethylene glycol–poly ε-caprolactone–polyethylenimine (mPEG–PCL-g–PEI) were successfully synthesized, and their application for codelivery of chemotherapeutic drugs and DNA simultaneously was investigated.Methods and results: These copolymers could self-assemble into micelles with positive charges. The size and zeta potential of the micelles was measured, and the results indicate that temperature had a large effect on the micelles obtained. In vitro gene transfection evaluation in cancer cells indicated that the self-assembled micelles could serve as potential gene delivery vectors. In addition, hydrophobic drug entrapment efficiency and codelivery with the gene was also studied in vitro. The self-assembled micelles could load doxorubicin efficiently and increase cellular uptake in vitro, while maintaining high gene transfection efficiency.Conclusion: The triblock copolymer mPEG–PCL-g–PEI could be a novel vector for codelivery of drug and gene therapy.Keywords: self-assembly, triblock copolymer, DNA, drug codelivery, gene transfection

Subjects

Subjects :
Medicine (General)
R5-920

Details

Language :
English
ISSN :
11769114 and 11782013
Volume :
2012
Issue :
default
Database :
Directory of Open Access Journals
Journal :
International Journal of Nanomedicine
Publication Type :
Academic Journal
Accession number :
edsdoj.5a34efcb54c46a10f084528a8651f
Document Type :
article