Back to Search Start Over

Suppressive Effect of Fraxetin on Adipogenesis and Reactive Oxygen Species Production in 3T3-L1 Cells by Regulating MAPK Signaling Pathways

Authors :
Woonghee Lee
Gwonhwa Song
Hyocheol Bae
Source :
Antioxidants, Vol 11, Iss 10, p 1893 (2022)
Publication Year :
2022
Publisher :
MDPI AG, 2022.

Abstract

Recent studies have identified obesity as one of the world’s most serious chronic disorders. Adipogenesis, in which preadipocytes are differentiated into mature adipocytes, has a decisive role in establishing the number of adipocytes and determining the lipid storage capacity of adipose tissue and fat mass in adults. Fat accumulation in obesity is implicated with elevated oxidative stress in adipocytes induced by reactive oxygen species (ROS). Adipogenesis regulation by inhibiting adipogenic differentiation and ROS production has been selected as the strategy to treat obesity. The conventional anti-obesity drugs allowed by the U.S. Food and Drug Administration have severe adverse effects. Therefore, various natural products have been developed as a solution for obesity, suppressing adipogenic differentiation. Fraxetin is a major component extracted from the stem barks of Fraxinus rhynchophylla, with various bioactivities, including anti-inflammatory, anticancer, antioxidant, and antibacterial functions. However, the effect of fraxetin on adipogenesis is still not clearly understood. We studied the pharmacological functions of fraxetin in suppressing lipid accumulation and its underlying molecular mechanisms involving 3T3-L1 preadipocytes. Moreover, increased ROS production induced by a mixture of insulin, dexamethasone, and 3-isobutylmethylxanthine (MDI) in 3T3-L1 was attenuated by fraxetin during adipogenesis. These effects were regulated by mitogen-activated protein kinase (MAPK) signaling pathways. Therefore, our findings imply that fraxetin possesses inhibitory roles in adipogenesis and can be a potential anti-obesity drug.

Details

Language :
English
ISSN :
20763921
Volume :
11
Issue :
10
Database :
Directory of Open Access Journals
Journal :
Antioxidants
Publication Type :
Academic Journal
Accession number :
edsdoj.5a1a6544d5a44727a88596dbadaa6328
Document Type :
article
Full Text :
https://doi.org/10.3390/antiox11101893