Back to Search Start Over

A cellular disease model toward gene therapy of TGM1-dependent lamellar ichthyosis

Authors :
Laura Sercia
Oriana Romano
Grazia Marini
Elena Enzo
Mattia Forcato
Laura De Rosa
Michele De Luca
Source :
Molecular Therapy: Methods & Clinical Development, Vol 32, Iss 3, Pp 101311- (2024)
Publication Year :
2024
Publisher :
Elsevier, 2024.

Abstract

Lamellar ichthyosis (LI) is a chronic disease, mostly caused by mutations in the TGM1 gene, marked by impaired skin barrier formation. No definitive therapies are available, and current treatments aim at symptomatic relief. LI mouse models often fail to faithfully replicate the clinical and histopathological features of human skin conditions. To develop advanced therapeutic approaches, such as combined ex vivo cell and gene therapy, we established a human cellular model of LI by efficient CRISPR-Cas9-mediated gene ablation of the TGM1 gene in human primary clonogenic keratinocytes. Gene-edited cells showed complete absence of transglutaminase 1 (TG1) expression and recapitulated a hyperkeratotic phenotype with most of the molecular hallmarks of LI in vitro. Using a self-inactivating γ-retroviral (SINγ-RV) vector expressing transgenic TGM1 under the control of its own promoter, we tested an ex vivo gene therapy approach and validate the model of LI as a platform for pre-clinical evaluation studies. Gene-corrected TGM1-null keratinocytes displayed proper TG1 expression, enzymatic activity, and cornified envelope formation and, hence, restored proper epidermal architecture. Single-cell multiomics analysis demonstrated proviral integrations in holoclone-forming epidermal stem cells, which are crucial for epidermal regeneration. This study serves as a proof of concept for assessing the potential of this therapeutic approach in treating TGM1-dependent LI.

Details

Language :
English
ISSN :
23290501
Volume :
32
Issue :
3
Database :
Directory of Open Access Journals
Journal :
Molecular Therapy: Methods & Clinical Development
Publication Type :
Academic Journal
Accession number :
edsdoj.5964d676582b409c971425f07d256aa7
Document Type :
article
Full Text :
https://doi.org/10.1016/j.omtm.2024.101311