Back to Search
Start Over
Systematic Error Correction for Geo-Location of Airborne Optoelectronic Platforms
- Source :
- Applied Sciences, Vol 11, Iss 22, p 11067 (2021)
- Publication Year :
- 2021
- Publisher :
- MDPI AG, 2021.
-
Abstract
- In order to improve the geo-location accuracy of the airborne optoelectronic platform and eliminate the influence of assembly systematic error on the accuracy, a systematic geo-location error correction method is proposed. First, based on the kinematic characteristics of the airborne optoelectronic platform, the geo-location model was established. Then, the error items that affect the geo-location accuracy were analyzed. The installation error between the platform and the POS was considered, and the installation error of platform’s pitch and azimuth was introduced. After ignoring higher-order infinitesimals, the least square form of systematic error is obtained. Therefore, the systematic error can be obtained through a series of measurements. Both Monte Carlo simulation analysis and in-flight experiment results show that this method can effectively obtain the systematic error. Through correction, the root-mean-square value of the geo-location error have reduced from 45.65 m to 12.62 m, and the mean error from 16.60 m to 1.24 m. This method can be widely used in systematic error correction of relevant photoelectric equipment.
Details
- Language :
- English
- ISSN :
- 20763417
- Volume :
- 11
- Issue :
- 22
- Database :
- Directory of Open Access Journals
- Journal :
- Applied Sciences
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.59361b7d5224c53b9d144477bbefc3f
- Document Type :
- article
- Full Text :
- https://doi.org/10.3390/app112211067