Back to Search Start Over

Fabrication of Bi2MoO6 Nanosheets/TiO2 Nanorod Arrays Heterostructures for Enhanced Photocatalytic Performance under Visible-Light Irradiation

Authors :
Di Zhou
Rui Du
Zhenglong Hu
Shu Gao
Yafang Tu
Yunfei Fu
Guang Zheng
Youhua Zhou
Source :
Nanomaterials, Vol 12, Iss 3, p 574 (2022)
Publication Year :
2022
Publisher :
MDPI AG, 2022.

Abstract

Bi2MoO6/TiO2 heterostructures (HSs) were synthesized in the present study by growing Bi2MoO6 nanosheets on vertically aligned TiO2 nanorod arrays using a two-step solvothermal method. Their morphology and structure were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD), respectively. Excellent visible-light absorption was observed by UV–Vis absorption spectroscopy, which was attributed to the presence of the Bi2MoO6 nanosheets with a narrow-band-gap. The specific surface area and pore volume of the photocatalysts were significantly increased due to the hierarchical structure composed of Bi2MoO6 nanosheets and TiO2 nanorods. The photoluminescence and photoelectrochemical characterizations showed improved separation and collection efficiency of the Bi2MoO6/TiO2 HSs towards the interface charge carrier. The photocatalytic analysis of the Bi2MoO6/TiO2 HSs demonstrated a significantly better methylene blue (MB) degradation efficiency of 95% within 3 h than pristine TiO2 nanorod arrays under visible-light irradiation. After three photocatalytic cycles, the degradation rate remained at ~90%. The improved performance of the Bi2MoO6/TiO2 HSs was attributed to the synergy among the extended absorption of visible light; the large, specific surface area of the hierarchical structure; and the enhanced separation efficiency of the photogenerated electron-hole pairs. Finally, we also established the Bi2MoO6/TiO2 HSs band structure and described the photocatalytic dye degradation mechanism. The related electrochemical analysis and free-radical trapping experiments indicated that h+, ·O2− and ·OH have significant effects on the degradation process.

Details

Language :
English
ISSN :
20794991
Volume :
12
Issue :
3
Database :
Directory of Open Access Journals
Journal :
Nanomaterials
Publication Type :
Academic Journal
Accession number :
edsdoj.58097b2d31494be3acc63800b74f8568
Document Type :
article
Full Text :
https://doi.org/10.3390/nano12030574