Back to Search Start Over

Influence of Shoe Mass on Performance and Running Economy in Trained Runners

Authors :
Víctor Rodrigo-Carranza
Fernando González-Mohíno
Jordan Santos-Concejero
Jose Maria González-Ravé
Source :
Frontiers in Physiology, Vol 11 (2020)
Publication Year :
2020
Publisher :
Frontiers Media S.A., 2020.

Abstract

PurposeThe aim of this study was to assess the effects of adding shoe mass on running economy (RE), gait characteristics, neuromuscular variables and performance in a group of trained runners.MethodsEleven trained runners (6 men and 5 women) completed four evaluation sessions separated by at least 7 days. The first session consisted of a maximal incremental test where the second ventilatory threshold (VT2) and the speed associated to the VO2max (vVO2max) were calculated. In the next sessions, RE at 75, 85, and 95% of the VT2 and the time to exhaustion (TTE) at vVO2max were assessed in three different shoe mass conditions (control, +50 g and +100 g) in a randomized, counterbalanced crossover design. Biomechanical and neuromuscular variables, blood lactate and energy expenditure were measured during the TTE test.ResultsRE worsened with the increment of shoe mass (Control vs. 100 g) at 85% (7.40%, 4.409 ± 0.29 and 4.735 ± 0.27 kJ⋅kg−1⋅km−1, p = 0.021) and 95% (10.21%, 4.298 ± 0.24 and 4.737 ± 0.45 kJ⋅kg−1⋅km−1, p = 0.005) of VT2. HR significantly increased with the addition of mass (50 g) at 75% of VT2 (p = 0.01) and at 75, 85, and 95% of VT2 (p = 0.035, 0.03, and 0.03, respectively) with the addition of 100 g. TTE was significantly longer (∼22%, ∼42 s, p = 0.002, ES = 0.149) in the Control condition vs. 100 g condition, but not between Control vs. 50 g (∼24 s, p = 0.094, ES = 0.068).ConclusionOverall, our findings suggest that adding 100 g per shoe impairs running economy and performance in trained runners without changes in gait characteristics or neuromuscular variables. These findings further support the use of light footwear to optimize running performance.

Details

Language :
English
ISSN :
1664042X
Volume :
11
Database :
Directory of Open Access Journals
Journal :
Frontiers in Physiology
Publication Type :
Academic Journal
Accession number :
edsdoj.57efb648675b4d1287661eedd75b9d97
Document Type :
article
Full Text :
https://doi.org/10.3389/fphys.2020.573660