Back to Search Start Over

Electrochemical kinetic energy harvesting mediated by ion solvation switching in two-immiscible liquid electrolyte

Authors :
Donghoon Lee
You-Yeob Song
Angyin Wu
Jia Li
Jeonghun Yun
Dong-Hwa Seo
Seok Woo Lee
Source :
Nature Communications, Vol 15, Iss 1, Pp 1-12 (2024)
Publication Year :
2024
Publisher :
Nature Portfolio, 2024.

Abstract

Abstract Kinetic energy harvesting has significant potential, but current methods, such as friction and deformation-based systems, require high-frequency inputs and highly durable materials. We report an electrochemical system using a two-phase immiscible liquid electrolyte and Prussian blue analogue electrodes for harvesting low-frequency kinetic energy. This system converts translational kinetic energy from the displacement of electrodes between electrolyte phases into electrical energy, achieving a peak power of 6.4 ± 0.08 μW cm−2, with a peak voltage of 96 mV and peak current density of 183 μA cm−2 using a 300 Ω load. This load is several thousand times smaller than those typically employed in conventional methods. The charge density reaches 2.73 mC cm−2, while the energy density is 116 μJ cm−2 during a harvesting cycle. Also, the system provides a continuous current flow of approximately 5 μA cm−2 at 0.005 Hz for 23 cycles without performance decay. The driving force behind voltage generation is the difference in solvation Gibbs free energy between the two electrolyte phases. Additionally, we demonstrate the system’s functionality in a microfluidic harvester, generating a maximum power density of 200 nW cm−2 by converting the kinetic energy to propel the electrolyte through the microfluidic channel into electricity.

Subjects

Subjects :
Science

Details

Language :
English
ISSN :
20411723
Volume :
15
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Nature Communications
Publication Type :
Academic Journal
Accession number :
edsdoj.57dd3c7e74784fa69cc4005a15a5ebc3
Document Type :
article
Full Text :
https://doi.org/10.1038/s41467-024-53235-z