Back to Search Start Over

Electrospun patches to deliver combination drug therapy for fungal infections

Authors :
Karolina Dziemidowicz
Mark Meszarik
Jacopo Piovesan
Mazna A. Almatroudi
Gareth R. Williams
Sudaxshina Murdan
Source :
Frontiers in Drug Delivery, Vol 4 (2024)
Publication Year :
2024
Publisher :
Frontiers Media S.A., 2024.

Abstract

Fungal infections, though affecting healthcare globally, receive insufficient attention in clinical and academic settings. Invasive fungal infections, particularly caused by combat wounds, have been identified as a critical threat by the US Department of Defense. Monotherapy with traditional antifungals is often insufficient, and so combination therapies are explored to enhance treatment efficacy. However, systemic combination treatments can result in severe adverse effects, suggesting the need for localised delivery systems, such as drug-loaded electrospun patches, to administer antifungals directly to the infection site. This proof-of-concept study hypothesised that dual amorolfine and terbinafine therapy slowly releasing from electrospun patches would be an effective way of eradicating Candida albicans when the patch was applied directly to the fungal colony. The feasibility of creating electrospun materials loaded with amorolfine and terbinafine for combination antifungal therapy was investigated. Electrospinning was used to fabricate polycaprolactone (PCL) patches with varying drug loadings (2.5%, 5%, and 10% w/w) of amorolfine and terbinafine either individually or in combination. The incorporation of both drugs in the fibres was confirmed, with the drugs predominantly in an amorphous state. Results showed that combination therapy patches had a significantly greater and prolonged antifungal effect compared to monotherapy patches, with larger zones of inhibition and sustained efficacy over at least 7 days. This study therefore demonstrates that PCL-based electrospun patches containing amorolfine and terbinafine provide superior antifungal activity against C. albicans compared to monotherapy patches. This approach could lower required drug doses, reducing adverse effects, and enhance patient compliance due to prolonged drug release, leading to more effective antifungal therapy.

Details

Language :
English
ISSN :
26740850
Volume :
4
Database :
Directory of Open Access Journals
Journal :
Frontiers in Drug Delivery
Publication Type :
Academic Journal
Accession number :
edsdoj.57a9ef7bf92f4a0b994895af4f382489
Document Type :
article
Full Text :
https://doi.org/10.3389/fddev.2024.1458009