Back to Search Start Over

Trace element detection in anhydrous minerals by micro-scale quantitative nuclear magnetic resonance spectroscopy

Authors :
Yunhua Fu
Renbiao Tao
Lifei Zhang
Shijie Li
Ya-Nan Yang
Dehan Shen
Zilong Wang
Thomas Meier
Source :
Nature Communications, Vol 15, Iss 1, Pp 1-10 (2024)
Publication Year :
2024
Publisher :
Nature Portfolio, 2024.

Abstract

Abstract Nominally anhydrous minerals (NAMs) composing Earth’s and planetary rocks incorporate microscopic amounts of volatiles. However, volatile distribution in NAMs and their effect on physical properties of rocks remain controversial. Thus, constraining trace volatile concentrations in NAMs is tantamount to our understanding of the evolution of rocky planets and planetesimals. Here, we present an approach of trace-element quantification using micro-scale Nuclear Magnetic Resonance (NMR) spectroscopy. This approach employs the principle of enhanced mass-sensitivity in NMR microcoils. We were able to demonstrate that this method is in excellent agreement with standard methods across their respective detection capabilities. We show that by simultaneous detection of internal reference nuclei, the quantification sensitivity can be substantially increased, leading to quantifiable trace volatile element amounts of about 50 ng/g measured in a micro-meter sized single anorthitic mineral grain, greatly enhancing detection capabilities of volatiles in geologically important systems.

Subjects

Subjects :
Science

Details

Language :
English
ISSN :
20411723
Volume :
15
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Nature Communications
Publication Type :
Academic Journal
Accession number :
edsdoj.5776dbdd9da040f1a869c5b64352acee
Document Type :
article
Full Text :
https://doi.org/10.1038/s41467-024-51131-0