Back to Search Start Over

Convolution model for COVID-19 rate predictions and health effort levels computation for Saudi Arabia, France, and Canada

Authors :
Yas Al-Hadeethi
Intesar F El Ramley
M. I. Sayyed
Source :
Scientific Reports, Vol 11, Iss 1, Pp 1-18 (2021)
Publication Year :
2021
Publisher :
Nature Portfolio, 2021.

Abstract

Abstract Many published infection prediction models, such as the extended SEIR (E-SEIR) model, are used as a study and report tool to aid health authorities to manage the epidemic plans successfully. These models face many challenges, mainly the reliability of the infection rate predictions related to the initial boundary conditions, formulation complexity, lengthy computations, and the limited result scope. We attribute these challenges to the absence of a solution framework that encapsulates the interacted activities that manage: the infection growth process, the infection spread process and the health effort process. In response to these challenges, we formulated such a framework first as the basis of our new convolution prediction model (CPM). CPM links through convolution integration, three temporal profile levels: input (infected and active cases), transformational (health efforts), and output functions (recovered, quarantine, and death cases). COVID-19 data defines the input and output temporal profiles; hence it is possible to deduce the cumulative efforts temporal response (CETR) function for the health effort level. The new CETR function determines the health effort level over a period. Also, CETR plays a role in predicting the evolution of the underlying infection and active cases profiles without a system of differential equations. This work covers three countries: Saudi Arabia, France, and Canada.

Subjects

Subjects :
Medicine
Science

Details

Language :
English
ISSN :
20452322 and 42464390
Volume :
11
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
edsdoj.576a07462d42464390b9c8c6770cea34
Document Type :
article
Full Text :
https://doi.org/10.1038/s41598-021-00687-8