Back to Search Start Over

A Method for Whole Brain Ex Vivo Magnetic Resonance Imaging with Minimal Susceptibility Artifacts

Authors :
Anwar S. Shatil
Kant M. Matsuda
Chase R. Figley
Source :
Frontiers in Neurology, Vol 7 (2016)
Publication Year :
2016
Publisher :
Frontiers Media S.A., 2016.

Abstract

Magnetic resonance imaging (MRI) is a non-destructive technique that is capable of localizing pathologies and assessing other anatomical features (e.g., tissue volume, microstructure, white matter connectivity) in postmortem, ex vivo human brains. However, when brains are removed from the skull and cerebrospinal fluid (i.e., their normal in vivo magnetic environment), air bubbles and air-tissue interfaces typically cause magnetic susceptibility artifacts that severely degrade the quality of ex vivo MRI data. In this report, we describe a relatively simple and cost-effective experimental set-up for acquiring artifact-free ex vivo brain images using a clinical MRI system with standard hardware. In particular, we outline the necessary steps, from collecting an ex vivo human brain to the MRI scanner setup, and have also described changing the formalin (as might be necessary in longitudinal postmortem studies). Finally, we share some representative ex vivo MRI images that have been acquired using the proposed setup in order to demonstrate the efficacy of this approach. We hope that this protocol will provide both clinicians and researchers with a straight-forward and cost-effective solution for acquiring ex vivo MRI data from whole postmortem human brains.

Details

Language :
English
ISSN :
16642295
Volume :
7
Database :
Directory of Open Access Journals
Journal :
Frontiers in Neurology
Publication Type :
Academic Journal
Accession number :
edsdoj.574e1303a3274c5a92fafa49fa84a96d
Document Type :
article
Full Text :
https://doi.org/10.3389/fneur.2016.00208