Back to Search Start Over

Phase transformation pathways in a Ti-5.9Cu alloy modified with Fe and Al

Authors :
Thomas Klein
Duyao Zhang
Ella Staufer
Torben Boll
Christian Schneider-Broeskamp
Christian Edtmaier
Martin Schmitz-Niederau
Jelena Horky
Dong Qiu
Mark Easton
Source :
Journal of Materials Research and Technology, Vol 27, Iss , Pp 4978-4985 (2023)
Publication Year :
2023
Publisher :
Elsevier, 2023.

Abstract

Titanium alloys have been gaining importance in various industries due to their advantageous combination of strength, low density, excellent corrosion/oxidation resistance, and superior mechanical properties at elevated temperatures. Recently, eutectoid Ti–Cu alloys have been explored as promising candidates for advanced processes. This work investigates the effects of Fe and Al on a Ti-5.9Cu alloy using multi-scale characterization techniques. While Fe acts as a β-stabilizing element (despite being a sluggish eutectoid former), Al acts as an α-stabilizer. This work focuses on the effects of combined addition of these elements, studied in different heat treatment conditions. The results show that a fine, equiaxed microstructure is obtained in the binary Ti-5.9Cu alloy, whereas the addition of 2 wt% Fe, or 2 wt% Fe combined with 2 wt% Al to the Ti-5.9Cu alloy deteriorates the effect of grain refinement and coarse, columnar grains result and a small amount of β-phase is retained. Further, the microstructure resulting from the eutectoid decomposition is altered dramatically from a lamellar pearlitic in the binary alloy to a lath-like α-phase with diverse decomposition products in the ternary and quaternary alloys accompanied by increasing hardness values. Evaluation of the α misorientation suggests that a substantial amount of non-Burgers α is present in the Ti-Cu alloy in contrast to the results of the ternary and quaternary alloys. The observed Cu-rich intermetallic compound was identified as Ti2Cu phase with off-stoichiometric composition. Results obtained explain how adding either Fe or Fe and Al leads to substantial hardening.

Details

Language :
English
ISSN :
22387854
Volume :
27
Issue :
4978-4985
Database :
Directory of Open Access Journals
Journal :
Journal of Materials Research and Technology
Publication Type :
Academic Journal
Accession number :
edsdoj.570275c90e9945078bb4d30b5d24a245
Document Type :
article
Full Text :
https://doi.org/10.1016/j.jmrt.2023.11.014