Back to Search Start Over

LongLine: Visual Analytics System for Large-scale Audit Logs

Authors :
Seunghoon Yoo
Jaemin Jo
Bohyoung Kim
Jinwook Seo
Source :
Visual Informatics, Vol 2, Iss 1, Pp 82-97 (2018)
Publication Year :
2018
Publisher :
Elsevier, 2018.

Abstract

Audit logs are different from other software logs in that they record the most primitive events (i.e., system calls) in modern operating systems. Audit logs contain a detailed trace of an operating system, and thus have received great attention from security experts and system administrators. However, the complexity and size of audit logs, which increase in real time, have hindered analysts from understanding and analyzing them. In this paper, we present a novel visual analytics system, LongLine, which enables interactive visual analyses of large-scale audit logs. LongLine lowers the interpretation barrier of audit logs by employing human-understandable representations (e.g., file paths and commands) instead of abstract indicators of operating systems (e.g., file descriptors) as well as revealing the temporal patterns of the logs in a multi-scale fashion with meaningful granularity of time in mind (e.g., hourly, daily, and weekly). LongLine also streamlines comparative analysis between interesting subsets of logs, which is essential in detecting anomalous behaviors of systems. In addition, LongLine allows analysts to monitor the system state in a streaming fashion, keeping the latency between log creation and visualization less than one minute. Finally, we evaluate our system through a case study and a scenario analysis with security experts.

Subjects

Subjects :
Information technology
T58.5-58.64

Details

Language :
English
ISSN :
2468502X
Volume :
2
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Visual Informatics
Publication Type :
Academic Journal
Accession number :
edsdoj.56e7cc788ca04737950dc362c6700768
Document Type :
article
Full Text :
https://doi.org/10.1016/j.visinf.2018.04.009